Whales Hunting Under Northern Lights: Video
Nature's epic beauty is evident in new footage that shows humpback whales hunting underneath the Aurora Borealis.
Stunning new footage shot in Norway shows humpback whales hunting herring under the Northern Lights.
Norwegian Public Broadcasting (NRK) photographer Harald Albrigsten captured the video while testing equipment, including a camera that makes it possible to shoot under very dark conditions yet still retains image definition.
What Is the Aurora Borealis? Photos
Albrigsten already had a viral video claim to fame, having previously shot beautiful footage of reindeer grazing under the Northern Lights.
Regarding his latest project, Albrigsten told NRK that as he was conducting the equipment tests, "I came suddenly upon a bunch of humpback whales that were playing under the Northern Lights. I went back the following day to see if I could get closer. After a few hours I nearly gave up, but then they turned up again."
Photos: Solar Storm Leads to Stunning Aurora Displays
According to BBC News, the video was taken was filmed off the coast of Kvaløya, near the city of Tromsø. It is fitting that Kvaløya means "Whale Island," honoring the many whales that come to the site to feed, bask, play and more.
The Northern Lights, also known as the Aurora Borealis, represent an astronomical phenomenon that actually occurs in both the northern and southern hemispheres, a Library of Congress fact sheet explains. Solar activity ejects a cloud of gas, called a "coronal mass ejection," that collides with Earth's magnetic field within 2 to 3 days.
This collision generates currents of charged particles that then flow along lines of magnetic force into the Polar Regions. When these particles encounter oxygen and nitrogen atoms in Earth's atmosphere, dazzling auroral lights result.
Breaching Humpback Whale Topples Kayakers
In some locations, such as Alaska or Greenland, the Northern Lights can be visible on most nights of the year.
If you are lucky enough to see this natural sky show, Albrigsten offers these photography tips:
Bring a tripod for your camera and get away from areas with lots of light.
Use an SLR (single-lens reflex camera) that allows for manual settings.
A rule of thumb is to set the camera at 800 ISO (light sensitivity) and have the aperture fully open.
Many people prefer to use the lowest possible ISO and slow shutter speeds.
Be patient, wear warm clothing and enjoy a hot beverage!
Video still showing humpback whales underneath the Northern Lights, Norway.
Officially known in the Northern hemisphere as the aurora borealis, the Northern Lights are natural phenomena featuring beautifully colored light displays over the Earth. Above is a photograph of an aurora taken on from the International Space Station on Sept 2, 2014. "This is what we see looking down while being inside an #aurora," wrote German astronaut
In 1621, a French scientist, Pierre Gassendi, saw the lights in the north and named after the Roman goddess of dawn, Aurora. He added the word "borealis" for the Roman god of the north wind, Boreas. In the southern hemisphere, they are called aurora australis, meaning "southern." The lights are usually seen after dusk near both poles. Although they look elegant and calm, aurorae are produced from millions of explosions of magnetic energy.
These haunting lights are a form of intense space weather, a result of the atmosphere shielding the Earth against fierce solar particles that would otherwise make our planet uninhabitable. Millions and millions of electrically charged particles in the solar wind wash over Earth and smash into upper atmospheric gases. The energy from each collision is released as photons -- particles of light. This causes the particles to glow. Aurorae are typically seen at the poles because Earth's magnetic field syphons them around the planet. Think of water moving around a rock protruding the surface of a river.
The lights are the most frequent between September and October (autumn) and then occur again between March and April (spring) because of Earth's tilt in relation to the sun. They are also visible sometimes in the winter. When darkness overtakes the sky, the lights stand out even brighter and can be seen longer.
Dazzling Aurora Appears Over Antarctica: Big Pic
Tasked with measuring aurora, NASA's THEMIS team has 20 ground-based observatories (GBOs) across Alaska and Canada. Each station includes a digital camera with a fish-eye lens to capture images of the aurora every three seconds and a magnetometer to measure changes in Earth's magnetic field due to electric currents surging through the upper atmosphere. This visualization shows the ground station locations' radial coverage. Each blue circle represents a circular distance of 540 kilometers (335 miles).
BLOG: Lightning, Stars, And Aurorae Shine In Epic Time-Lapse
The shape of the aurorae can vary widely. They can appear in a dull glow, arcs, swirls or streaks across the sky called "curtains" that always run east-west, moving and changing constantly. Their "shimmering" effect is actually producing by fading particle explosions just as new ones occur. Although harmless to life on Earth, the aurora can cause power disruptions in satellite communications and in radio and television broadcasts.
The higher in the sky these collisions occur, the more intense the color of the lights. Most aurorae occur about 60 to 620 miles above the earth's surface. They're most commonly green. Only displays extremely high in the upper atmosphere will turn red or purple. Atmospheric gases -- hydrogen, nitrogen, oxygen -- interacting with the solar particles also play a role in the manner in which the colorful display appears.
During peaks in the solar cycle, when solar flares produce the most intense spurts of wind from the sun, more particles collide with Earth's atmosphere causing more brilliant aurorae. These vibrant green aurorae, shown here above the Alaskan wilderness, are the most dominant aurora color. They occur from about 100 kilometers (about 62 miles) to 250 kilometers (about 155 miles) above the Earth's surface and are caused by the reaction of solar particles with oxygen in the atmosphere.
Blue aurorae are found at the lowest parts of the atmosphere, around 60 miles above the Earth's surface. They are produced from collisions with molecular nitrogen.
During magnetic solar storms, aurorae may shift from the polar regions toward the equator because eruptions from the sun interfere with Earth's magnetic field. When this happens, residents as far as the Dakotas can see intense Northern Lights such as the ones pictured here.
NASA scientists are on an endless search to find Earth-like features off our planet, and Saturn's aurorae fit the bill. The aurorae on Saturn are generated from charged particles released by the sun interacting with Saturn's upper atmosphere, causing them to glow. Using invisible light, Cassini cameras were able to capture aurorae at Saturn's poles for the first time in 2008. The aurorae appear at the poles because the ringed planet's magnetic field forces them pole-ward, exactly what happens on Earth.
Jupiter is no different. The gas giant also showcases aurora at its poles for the same reasons they appear on Saturn and Earth. However, unlike Earth, Jupiter's aurora include several bright streaks and dots, instead of a more uniform "curtain" pattern. Magnetic fields connecting Jupiter to its largest moons -- specifically Io, Ganymede and Europa -- are to blame.