Space & Innovation

Wearable Device Changes Your Mood

Gadget zaps your brain with low levels of pulsed electrical energy to calm you down or energize you up.

Wake up on the wrong side of the bed? Got a case of the Tuesdays? Did some person -- a woman you thought you knew really well? -- did that someone's racist post on Facebook really stick in your craw and leave you peeved all morning, questioning the nature of humanity, until you had to just unfriend said person, even though you've known her for twenty-plus years?

Is Your Personality Affected By Your Birth Season?

Well, have we got something for you. It's Thync, a wearable device that zaps your brain with low levels of pulsed electrical energy to calm you down or energize you up. It could be, for all intents and purposes, the world's first digital drug.

Will Shanklin of Gizmag first tried Thync at the Consumer Electronics Show in January 2015 and has written about it again with the company's latest announcement that it's now taking.

Shanklin says he was skeptical at first, but after using the head-mounted gadget a couple of times, says he has "the wearable batting 1,000, as the device's two different modes left me feeling a meditative calm and an inspired energy -- just as they're supposed to."

The Thync System, founded by Jamie Tyler, who has a Ph.D. in neuroscience and bioengineering and Isy Goldwasser, is a wireless device that pairs with an iPhone or iPad via a Bluetooth connection (Android app coming soon). Using the app, you chose the kind of session, the intensity as well as the length of a session.

Zap Your Brain To Change Your Mood

Shanklin describes the calm mode giving him a feeling as if he just smoked a joint. The energy mode provide his brain with more clarity.

Thync is considered a lifestyle product, as opposed to a medical device, and therefore hasn't undergone any testing, except those required by the Underwriter's Laboratory to ensure its electrical safety.

You can order it now for $299 and if you're not satisfied, can return it within 30 days for a full refund. Operators are standing by.

via Gizmag

Lasers may bring to mind military-grade weaponry or the pew-pew sounds of science fiction blasters, but powerful laser tech can be used for less destructive purposes. Scientists and engineers are now aiming lasers at persistent problems like air turbulence, inoperable tumors and drug addiction. Here's a look at the ways zapping something with a beam of light can actually help rather than hurt.

Scientists -- and super villains -- have long wanted to control the weather with technology. What once seemed like a wild dream has become possible in theory. In late 2013, the World Meteorological Organization conference in Geneva held a Laser, Weather and Climate conference where participants discussed controlling lightning and condensation with laser assists.

More recently researchers at the University of Florida and the University of Arizona surrounded one laser beam with another, a technique they think could help a high-energy beam go greater distances.

In 2010, neurosurgeons from Washington University were among the first in the United States to use a laser probe on brain tumors thought to be inoperable. The team, led by chief of neurosurgery Ralph G. Dacey Jr., employed the new MRI-guided probe from Monteris Medical to kill cancer cells deep in a patient’s brain, leaving the surrounding tissue intact. Last year the laser probe, called the NeuroBlate Thermal Therapy System, was cleared by the Food and Drug Administration.

Laser beams could be the key to getting hearts beating correctly, an alternative to current electrode-based pacemakers that can do damage to heart muscle over the long-term. In 2010, scientists from Case Western University and Vanderbilt University successfully paced a live quail embryo heart with light from an infrared laser.

While we don’t quite have human optical pacemakers yet, a team from the University College London recently made headway with a separate laser-based technique. They’re hoping to create an “optical pacemaker” for the diaphragm that could help patients with motor neuron diseases like ALS breathe independently.

Apira Science Inc.’s iGrow helmet to combat baldness may not look serious at first, but the company says this low-level laser therapy has been proven effective at stimulating cell activity around weak hair follicles. The helmet interior has red laser and LED light diodes that go to work in multiple weekly sessions over several months.

Apria points to an article in the journal Lasers in Surgery and Medicine that concluded low level laser therapy improved hair counts for men with alopecia compared to a placebo light-up helmet.

Could controlling addiction be as easy as flipping a switch? In 2013, scientists from the National Institutes of Health and the University of California were able to turn off compulsive behavior in rats through a combination of genetic engineering and laser light delivered through fiber optic cables. When they turned on a laser light in the brain region responsible for decision-making and impulse control, the compulsive cocaine seeking was gone, according to researcher Antonello Bonci.

While lasers were used for the study, techniques like noninvasive transcranial magnetic stimulation would probably be used for human trials.

A team from Leibniz University Hanover led by biosystems engineering professor Thomas Rath has been working on a way to eradicate pesky weeds with lasers. In 2012 he and his colleagues investigated mid-infrared range lasers as an alternative to herbicides.

A year later Leibniz University engineers shifted their focus and began studying the effects of near-infrared lasers on pests like aphids and whiteflies. They hope the right lase blast will safely kill the pests while leaving the host plants unaffected.

Last summer frequent fliers got a glimmer of hope for smoother travel. Researchers at the German Aerospace Center DLR’s Institute of Atmospheric Physics began testing technology that can detect turbulence, particularly the clear air kind that’s nearly impossible to predict. The device goes onboard a plane and emits short-wave ultraviolet laser radiation along the direction of flight, according to DLR. This reveals fluctuations in air density that indicate turbulence ahead. DRL has been testing the tech on flights in Europe with the goal of extending the detection distance to 20 miles.

Stanford University bioengineering, psychiatry and behavioral science professor Karl Deisseroth is a pioneer in using a technique called optogenetics, which involves genetically modifying neurons so they make a light-sensitive protein. Those cells can then be turned on or off with laser-based light.

Recently a group from University College London led by neurobiologist Linda Greensmith used optogenetics on paralyzed mice. Her group grafted genetically engineered motor neurons onto severed nerves in mice legs. Shining blue light on them restored nerve connectivity, reversing the paralysis.