Wait Just a Minute, Dark Matter May Not be Dark After All

A new study carried out by the ESO's Very Large Telescope and the NASA/ESA Hubble Space Telescope has revealed for the first time that dark matter may well interact with itself. Continue reading →

A new study carried out by the ESO's Very Large Telescope and the NASA/ESA Hubble Space Telescope has revealed for the first time that dark matter may well interact with itself - a discovery that, at first glance, seems to contradict what we thought we knew about the nature of this invisible mass.

So what's going on?

ANALYSIS: Dark Matter Just Got Darker (and Weirder)

Using the advanced MUSE instrument at the VLT and Hubble, astronomers were able to zoom in on 4 colliding galaxies within the galaxy cluster Abell 3827. This cluster is huge and is often the hunting ground for enigmatic gravitational lenses.

All galaxies are comprised primarily of dark matter. Without this invisible mass, which accounts for 85 percent of the mass of the entire universe, observations of the visible matter within a spinning galaxy wouldn't make much sense; the stars should fly apart. But with the presence of dark matter, galaxies have the gravitational bulk to retain their structure.

So when observing Abell 3827, astronomers know that dark matter is there through observations of gravitational lenses - starlight from galaxies behind the cluster becomes warped and bent around curved spacetime. If you remove the gravitational influence of the visible galaxies, a huge gravitational component remains, allowing astronomers to accurately measure the quantities and locations of dark matter clouds within the galaxy cluster.

ANALYSIS: LHC Ready to Hunt Down Mystery Dark Matter Particles

Using this method to map out the distribution of dark matter in 4 colliding galaxies, astronomers have deduced that the dark matter associated with each galaxy is lagging some 5,000 light-years behind the normal matter in those galaxies.

What's causing this lag? According to the study, published in the journal Monthly Notices of the Royal Astronomical Society on April 15, it is being caused by some kind of interaction between the galactic halos of dark matter within the colliding galaxies. As the galaxies collide, the visible matter interacts as expected, but the dark matter halos appear to have a net drag effect on one another, creating the 5,000 light-year lag.

"We used to think that dark matter just sits around, minding its own business, except for its gravitational pull," said Richard Massey of Durham University and lead author of this study. "But if dark matter were being slowed down during this collision, it could be the first evidence for rich physics in the dark sector - the hidden Universe all around us."

This is an exciting discovery, but to understand what kind of mutual dark matter interaction is causing this large-scale effect, we need more observations and refined computer simulations.

ANALYSIS: Supermassive Diet: Black Holes Bulk-Up on Dark Matter

"We know that dark matter exists because of the way that it interacts gravitationally, helping to shape the Universe, but we still know embarrassingly little about what dark matter actually is," said co-investigator Liliya Williams of the University of Minnesota. "Our observation suggests that dark matter might interact with forces other than gravity, meaning we could rule out some key theories about what dark matter might be."

This possible dark matter interaction appears to contradict the recent survey of 72 galaxy cluster collisions. The result of that study indicated that dark matter interacts very little (if at all) with itself.

But this new study zooms in on individual colliding galaxies, not entire clusters. According to Massey's team, the collisions studied here focuses on the behaviour of dark matter over galactic scales and the galactic collisions studied here have likely lasted longer than those observed in the previous study, increasing the observed lag effect over time.

Regardless, both studies have provided a fascinating insight to possible dark matter interactions over two different scales.

"We are finally homing in on dark matter from above and below - squeezing our knowledge from two directions," said Massey.

Source: ESO

This image from the NASA/ESA Hubble Space Telescope shows the rich galaxy cluster Abell 3827. The strange blue structures surrounding the central galaxies are gravitationally lensed views of a much more distant galaxy behind the cluster.

10. Saturn Moon Titan Explored

On Jan. 14, 2005, the European Space Agency's Huygens probe dropped through Titan's atmosphere after a seven-year trek attached to NASA's Cassini spacecraft. Huygens wasn't designed to live for very long after atmospheric reentry, but it unveiled a mysterious outer solar system world to us for the first time. Before this mission, very little was known about Saturn's largest moon, and scientists were unsure whether Huygens would land on a rocky surface or in an ocean. Titan's thick atmosphere -- composed of primarily nitrogen and clouds of methane and ethane, about 50 percent thicker than our atmosphere -- signaled to scientists that Titan was similar to a young Earth. Observations from the Huygens probe and Cassini spacecraft tell us that Titan and Earth share many features, such as sand dunes and lakes. But these features are heavily laced with organic molcules that could support life, leading researchers to speculate about Titan's potential to nurture microbes.

9. Moon Water Confirmed

India's Chandrayaan-1 satellite confirmed the presence of water on the moon in September 2009, building on flyby observations by other probes on their way elsewhere. Although the lunar surface is still drier than Earth's driest desert, evidence of water is there, hinting at a solar wind interaction with the moon's surface that produces water and hydroxyl molecules. It may not be an oasis up there, but future moon colonists could extract and purify the traces of water from the surface to use for drinking, food cultivation, oxygen and fuel. Or, our colonists could take a trek to the moon's poles to mine water from the deepest craters On Oct. 9, 2009, NASA dropped a spent rocket into a crater to produce a 100-foot-wide hole. They found water there too. That rocket produced a massive plume of dust that was analyzed by the Lunar Reconnaissance Orbiter (LRO) and ground-based observatories. At least 25 gallons of water ice was detected in the plume.

8. Organic Chemistry Collected from Comet's Tail

In 2004, the NASA Stardust mission chased after Comet Wild 2 to find out if the icy mass contained the building blocks for life, since meteorites found on Earth contained organic chemistry that originated from space. Sure enough, in August 2009, NASA announced that they had found samples of glycine -- an amino acid -- in Stardust's collection plates. It didn't stop there, there's increasing evidence that exoplanets orbiting distant stars contain organic chemistry in their atmospheres. In 2008, organic chemicals were detected in the disk surrounding a star called HR 4796A, 220 light-years from Earth. And most recently, NASA's Hubble and Spitzer space telescopes detected carbon dioxide, methane and water vapor in the atmosphere of an exoplanet called HD 209458b. These discoveries, sparked by Stardust, have transformed our understanding about how life may have formed on Earth. They also give us a strong hint that life may not be unique to Earth; the universe appears to be manufacturing organic chemistry everywhere.

7. A Supermassive Black Hole on Our Doorstep

There's a monster living in the center of our galaxy, 26,000 light-years from Earth. By 2008, astronomers tracking the behavior of stars orbiting an invisible point confirmed that the monster is a supermassive black hole called Sagittarius A*. A lone star called "S2," with a very fast orbit, has been tracked since 1995 around this invisible point. In 2002, Rainer Schödel and his team at the Max Planck Institute for Extraterrestrial Physics announced that the only explanation for S2's fast orbit was that it was circling a very compact, massive object -- a supermassive black hole -- that was stopping the star from flinging out of its orbit into space. In 2008, after S2 completed one 16-year orbit, it was confirmed that the star was orbiting a black hole with a gargantuan mass of approximately 4.3 million suns. The confirmation of a supermassive black hole in the center of the Milky Way boosted the theory that most galaxies contain a supermassive black hole at their cores.

6. Big Bang "Echo" Mapped for the First Time

In June 2001, NASA set out to find the ancient "echo" of the Big Bang by mapping the cosmic microwave background (CMB) radiation that buzzes like static throughout the cosmos, using the Wilkinson Microwave Anisotropy Probe (WMAP) . When the universe was born, vast amounts of energy were unleashed, which eventually condensed into the stuff that makes up the mass of what we see today. The radiation that was created by the Big Bang still exists, but as faint microwaves. By mapping slight variations in the CMB radiation, the probe has been able to precisely measure the age of the universe (13.73 billion years old) and work out that a huge 96 percent of the mass of the universe is made up of stuff we cannot see. Only 4 percent of the cosmic mass is held in the stars and galaxies we observe; the rest is held in "dark energy" and "dark matter."

5. Hubble Gets to Grips with Dark Energy

In 2002, the Hubble Space Telescope was upgraded with a new instrument, the Advanced Camera for Surveys, that revealed the presence of a mysterious force called "dark energy." The camera was set up to help researchers understand why Type Ia supernovae were dimmer than expected. Hubble's observations of these supernovae discovered that they weren't dimmer because the stars were different (they should all explode with the same brightness). The only explanation was that the universe's expansion was unexpectedly and inexplicably speeding up. This accelerated expansion was making the light dim over vast cosmic distances. Hubble's discovery led to a better understanding of what dark energy is -- an invisible force that opposes gravity, causing the universe's expansion to speed up. WATCH VIDEO about Hubble's most recent upgrade.

4. Eris Discovered; Pluto Demoted

In January 2005, Mike Brown and his team at Palomar Observatory, Calif. discovered 136199 Eris, a minor body that is 27 percent bigger than Pluto. Eris had trumped Pluto and become the 9th largest body known to orbit the sun. In 2006, the International Astronomical Union (IAU) decided that the likelihood of finding more small rocky bodies in the outer solar system was so high that the definition "a planet" needed to be reconsidered. The end result: Pluto was reclassified as a dwarf planet and it acquired a "minor planet designator" in front of its name: "134340 Pluto." WATCH VIDEO about Pluto's demotion to a minor planet. Mike Brown's 2005 discovery of Eris was the trigger that changed the face of our solar system, defining the planets and adding Pluto to a growing family of dwarf planets.

3. Dark Matter Detected

In the summer of 2006, astronomers made an announcement that helped humans understand the cosmos a little better: They had direct evidence confirming the existence of dark matter -- even though they still can't say what exactly the stuff is. The unprecedented evidence came from the careful weighing of gas and stars flung about in the head-on smash-up between two great clusters of galaxies in the Bullet Cluster. Until then, the existence of dark matter was inferred by the fact that galaxies have only one-fifth of the visible matter needed to create the gravity that keeps them intact. So the rest must be invisible to telescopes: That unseen matter is "dark." The observations of the Bullet Cluster, officially known as galaxy cluster 1E0657-56, did not explain what dark matter is. They did, however, give researchers hints that dark matter particles act a certain way, which they can build on. -- Larry O'Hanlon

2. Mars Surface Gives up Signs of Water

In 2008, NASA's Mars Phoenix lander touched down on the Red Planet to confirm the presence of water and seek out signs of organic compounds. Eight years before, the Mars Global Surveyor spotted what appeared to be gullies carved into the landscape by flowing water. More recently, the Mars Expedition Rovers have uncovered minerals that also indicated the presence of ancient water. But proof of modern-day water was illusive. Then Phoenix, planted on the ground near the North Pole, did some digging for samples to analyze. During one dig, the onboard cameras spotted a white powder in the freshly dug soil. In comparison images taken over the coming days, the powder slowly vanished. After intense analysis, the white powder was confirmed as water ice. This discovery not only confirmed the presence of water on the Red Planet, it reenergized the hope that some kind of microbial life might be using this water supply to survive.

1. Alien Planets Spotted Directly

The first alien planets -- called exoplanets -- were being detected in the early 1990s, but not directly. In 2000, astronomers detected a handful by looking for a star's "wobble," or a star's slight dimming as the exoplanet passed in front of it. Today we know of 400 exoplanets. In 2008, astronomers using the Hubble Space Telescope and the infrared Keck and Gemini observatories in Hawaii announced that they had "seen" exoplanets orbiting distant stars. The two observatories had taken images of these alien worlds. The Keck observation was the infrared detection of three exoplanets orbiting a star called HR8799, 150 light-years from Earth. Hubble spotted one massive exoplanet orbiting the star Fomalhaut, 25 light-years from Earth. These finds pose a profound question: How long will it be until we spot an Earth-like world with an extraterrestrial civilization looking back at us?