Seeker Archives

Unprecedented Flare Blasts from Galaxy's Black Hole

The giant black hole at the center of the Milky Way galaxy recently spit out the largest X-ray flare ever seen in that region.

The giant black hole at the center of the Milky Way galaxy recently spit out the largest X-ray flare ever seen in that region, astronomers say.

The enormous eruption from the Milky Way's core was detected on Sept. 14, 2013, very close to the supermassive black hole known as Sagittarius A*. Pronounced "Sagittarius A star" and abbreviated as Sgr A*, the Milky Way's monster black hole has a mass that is about 4.5 million times that of the sun. Scientists unveiled the discovery of the record-breaking flare this month at the 225th meeting of the American Astronomical Society.

GALLERY: Probing a Spinning Black Hole

The so-called "megaflare" was spotted by NASA's Chandra X-ray Observatory, which can peer through dust and starlight to the center of the Milky Way. The event was 400 times brighter than the normal level of radiation from this region and nearly three times brighter than the previous record-holding flare, recorded in 2012. A second X-ray flare, with a flash 200 times brighter than normal levels, was then seen on Oct. 22, 2014. [No Escape: Black Holes Explained (Infographic)]

Daryl Haggard, of Amherst College in Massachusetts, presented the findings at a news conference here at the AAS meeting on Jan. 5. Haggard and her colleagues have two possible explanations for what might have caused the flare. First, the black hole may be behaving like our own sun, which also emits bright X-ray flares. In the sun, these flares occur when magnetic-field lines become very tightly packed together or twisted, and the researchers said it's possible something similar took place near the black hole.

It's also plausible that the flare was the product of Sgr A* having a snack. An asteroid or other object may have come too close to the black hole, ripping it apart. The debris would have accelerated rapidly and potentially radiated a bright burst of X-rays.

ANALYSIS: Is Our Galaxy's Monster Black Hole Actually a Wormhole?

"If an asteroid was torn apart, it would go around the black hole for a couple of hours - like water circling an open drain - before falling in," Fred Baganoff, of the Massachusetts Institute of Technology and a member of the research team, said in a statement. "That's just how long we saw the brightest X-ray flare last, so that is an intriguing clue for us to consider."

Researchers saw the flare by chance while watching Sgr A* in anticipation of a different event: A gas cloud called G2 was set to make a close pass by Sgr A*, and some scientists hypothesized that material from G2 would fall into the black hole, generating a bright display of X-rays, NASA officials said in a statement. But no X-ray signal was detected as G2 made its closest approach to Sgr A*. The new flares do not appear to be part of the missing light show, according to Haggard.

"We do not think flares are connected to the G2 object," Haggard said. "And the reason for that is that the time scales don't quite match. The time scale for these flares is fairly rapid - thousands of seconds," or an hour or two, she said.

ANALYSIS: When Massive Black Holes Snuff Out Star Birth

This time scale is characteristic of an object roughly one astronomical unit (the distance from the Earth to the sun) from Sgr A*, Haggard added. G2's closest approach to Sgr A* was 150 astronomical units, "so the time scale doesn't quite match up," she added.

Haggard and her colleagues are hoping for flares from Sgr A*. With more detailed observations, she said, it might be possible to discern whether Sgr A* is rotating or stationary - a feature that can change aspects of a black hole's physiology.

More from SPACE.com:

Mysterious X-Ray Flare Lights Up Black Hole Cloud | Video Strongest Flare Yet From Black Hole In Milky Way Core | Video Our Milky Way Galaxy's Core Revealed (Photos)

Original article on Space.com. Copyright 2015 SPACE.com, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

The brightest flare ever seen near the supermassive black hole at the center of the Milky Way galaxy was spotted by NASA's Chandra X-ray Observatory.

Artist's impression of a spinning supermassive black hole with a surrounding accretion disk and relativistic jets.

How to measure the spin of a black hole: This chart illustrates the basic model for determining the spin rates of black holes. The three artist's concepts represent the different types of spin: retrograde rotation, where the disk of matter falling onto the hole, called an accretion disk, moves in the opposite direction of the black hole; no spin; and prograde rotation, where the disk spins in the same direction as the black hole.

Two models of black hole spin: Scientists measure the spin rates of supermassive black holes by spreading the X-ray light into different colors. The light comes from accretion disks that swirl around black holes, as shown in both of the artist's concepts. They use X-ray space telescopes to study these colors, and, in particular, look for a "fingerprint" of iron -- the peak shown in both graphs, or spectra -- to see how sharp it is. Prior to observations with NASA's Spectroscopic Telescope Array, or NuSTAR, and the European Space Agency's XMM- Newton telescope, there were two competing models to explain why this peak might not appear to be sharp. The "rotation" model shown at top held that the iron feature was being spread out by distorting effects caused by the immense gravity of the black hole. If this model were correct, then the amount of distortion seen in the iron feature should reveal the spin rate of the black hole. The alternate model held that obscuring clouds lying near the black hole were making the iron line appear artificially distorted. If this model were correct, the data could not be used to measure black hole spin.

This chart depicts the electromagnetic spectrum, highlighting the X-ray portion. NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and the European Space Agency's XMM-Newton telescope complement each other by seeing different colors of X-ray light. XMM-Newton sees X-rays with energies between 0.1 and 10 kiloelectron volts (keV), the "red" part of the spectrum, while NuSTAR sees the highest-energy, or "bluest," X- ray light, with energies between 3 and 70 keV.

This image taken by the ultraviolet-light monitoring camera on the European Space Agency's (ESA's) XMM-Newton telescope shows the beautiful spiral arms of the galaxy NGC1365. Copious high-energy X-ray emission is emitted by the host galaxy, and by many background sources. The large regions observed by previous satellites contain so much of this background emission that the radiation from the central black hole is mixed and diluted into it. NuSTAR, NASA's newest X-ray observatory, is able to isolate the emission from the black hole, allowing a far more precise analysis of its properties.

What XMM-Newton saw: The solid lines show two theoretical models that explain the low-energy X-ray emission seen from the galaxy NGC 1365 by the European Space Agency's XMM-Newton. The red line explains the emission using a model where clouds of dust and gas partially block the X-ray light, and the green line represents a model in which the emission is reflected off the inner edge of the accretion disk, very close to the black hole. The blue circles show the measurements from XMM-Newton, which are explained equally well by both models.

Two X-ray observatories are better than one: NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, has helped to show, for the first time, that the spin rates of black holes can be measured conclusively. It did this, together with the European Space Agency's XMM-Newton, by ruling out the possibility that obscuring clouds were partially blocking X-ray right coming from black holes. The solid lines show two theoretical models that explain low-energy X-ray emission seen previously from the spiral galaxy NGC 1365 by XMM-Newton. The red line explains the emission using a model where clouds of dust and gas partially block the X-ray light, and the green line represents a model in which the emission is reflected off the inner edge of the accretion disk, very close to the black hole. The blue circles show the latest measurements from XMM-Newton, and the yellow circles show the data from NuSTAR. While both models fit the XMM-Newton data equally well, only the disk reflection model fits the NuSTAR data.