'Smart' LED Farming Could Make Space Veg Viable

Could 'targeted' LEDs be the future of extraterrestrial horticulture? According to researchers, these tiny electrical components could lead a revolution in fine-tuning food production off (and on) Earth.

Could ‘targeted' LEDs be the future of extraterrestrial horticulture? According to researchers at Purdue University, these tiny electrical components could lead a revolution in fine-tuning food production off (and on) Earth.

PHOTOS: Gourmet Astronauts: Favorite Space Food

Space exploration is a resource-intensive endeavor, especially if you throw humans into the mix. Everything from life support to water supply to waste disposal need to be carefully controlled when supporting astronauts in orbit. The International Space Station, for example, is a grand experiment into how to keep astronauts alive and healthy in a microgravity environment. But the orbiting outpost is only a couple of hundred miles from the Earth's surface, so supplies can be shipped from Earth -- creating a self-supporting biosphere isn't a possibility.

Supporting long-duration spaceflight beyond Earth orbit, however, is an entirely different challenge.

Current plans for manned exploration of Mars would require months of supplies of food and water to be packed on board the transiting spacecraft and if we ever see a human presence on the Red Planet's surface, we'll need to see a paradigm shift in how we supply and produce food in an alien environment. Put simply, for a 1,000 day round-trip to Mars, there is no (practical) way we can pack that quantity of supplies for the voyage.

Cue the space greenhouse, where all your fresh food dreams will become a reality. Although there have been promising experiments into growing produce in space, there are many unknowns and some huge drawbacks that could seriously limit humankind's next giant leap into the solar system.

ANALYSIS: Space Beer Reaches for Final Frontier

If you've seen concept art of greenhouses on Mars or the moon, you'll notice that power-intensive lamps are envisaged to provide light for the various leafy crops. On Earth, sodium lamps are often used to simulate sunlight, but this technology highlights an obstacle for in-space farming.

"Everything on Earth is ultimately driven by sunlight and photosynthesis," said Cary Mitchell, professor of horticulture at Purdue University in a press release. "The question is how we can replicate that in space."

First and foremost, conventional lamps would require huge amounts of power in a place where power is a precious commodity. Not only that, they are inefficient, generating excess heat that may prove hard to manage in a delicately-balanced habitat on Mars and beyond.

In hydroponics research headed by Mitchell and masters student Lucie Poulet (who is now at Blaise Pascal University in France), a silver bullet for the viability of growing produce in space has possibly been found: red and blue light-emitting diodes, or LEDs.

ANALYSIS: 3-D Printed Space Food For the Gourmet Astronaut

LEDs have revolutionized miniaturized light generation on Earth. LEDs are highly efficient, lightweight and consume very little power - therefore an obvious choice for a range of in-space applications, now including horticulture.

"If you have to generate your own light with limited energy resources, targeted LED lighting is your best option," said Mitchell. "We're no longer stuck in the era of high-power lighting and large, hot, fragile lamps."

"(Conventional) lighting was taking about 90 percent of the energy demand," added Poulet. "You'd need a nuclear reactor to feed a crew of four people on a regular basis with plants grown under traditional electric lights."

Through experiments on lettuce, Mitchell and Poulet found that high-intensity LEDs were smaller and longer lasting than conventional light sources and they emit negligible radiant heat. In other words, the light-generating components of a space greenhouse can be tiny and positioned extremely close to the photosynthesizing plants without scorching the leaves.

"Instead of the minimum 4-foot (120 centimeters) separation we had between conventional lamps and lettuce, we could get LEDs as close as 4 centimeters (1.6 inches) away from the leaves," said Mitchell.

NEWS: Food for Mars: A Daunting Challenge

Most interestingly, with LEDs, the wavelength of light they emit can be carefully tuned and the researchers have worked out exactly what light the lettuce needs to thrive. Using red and blue LEDs, they found that to optimize photosynthesis, a 95:5 ratio of red and blue LEDs are required. This strategy results in 90 percent less electrical power required over conventional lighting and 50 percent reduction in power required over broad-spectrum LED lighting.

Where space research leads, terrestrial applications often follow. Although the primary focus is on producing lettuce in space, this research could help optimize farming techniques and technologies on Earth.

The next step for this research is to optimize growing conditions still further, regulating how much LED light the lettuce receives depending on its growth cycle. One could envisage "smart" farming where, depending on the crop, the LED light can be boosted or dimmed automatically, optimizing photosynthesis while saving further energy resources.

Source: Purdue University

Targeting hydroponically grown leaf lettuce with red and blue LEDs saves a significant amount of energy compared with traditional lighting.

Ink seems so retro now that machines can custom-print myriad 3-D objects, including snacks. Here are some of the most impressive edibles to emerge from 3-D printers so far.

Cornell University’s Creative Machines Lab

is at the forefront of 3-D printed food. The lab’s Fab@Home project led by PhD candidate Jeffrey Ian Lipton uses solid freeform fabrication to print interesting snacks. Lab researchers worked with the French Culinary Institute to print this space shuttle from cheese.

3-D Printing Is Getting Ready to Explode

Printing with chocolate is a no-brainer given its consistency but what used to be a novelty has started going mainstream. Chocolate companies are using 3-D printing tech in new ways, like this


printed for Nestlé and Android KitKat’s



Using food like ink can be much trickier than generating a mold from 3-D tech. Several years ago

Windell Oskay

and his team at

Evil Mad Scientist Laboratories

custom-built a 3-D fabricator that fused sugar together into sculptures. More recently 3D Systems released the ChefJet printer to produce confections and cake-toppers.

One day the pizza question could be, Fresh, frozen or printed? The Barcelona-based startup Natural Machines printed fresh pizzas using a 3-D machine prototype called Foodini in 2013. At the same time, NASA gave a grant to the Systems and Materials Research Corporation in Austin to develop pizza-printing capabilities for space.

3D-Printed Pizza to Feed Colonists on Mars

The crew at Cornell University’s Creative Machines Lab did print thick cookies containing the letter C but German designer

Ralf Holleis

produced fewer crumbs. He collaborated with a professor at the University of Applied Sciences Coburg to print

holiday cookies

from red and green colored dough.

Printed meat doesn’t sound all that appetizing but that hasn’t stopped anyone from trying. The startup

Modern Meadow

is working on developing humane, bioprinted meat while

Natural Machines

used their Foodini to create real swirled hamburgers -- as well as the buns and cheese to go on top.

These chips might look like ramen noodles but researchers at the Cornell Creative Machines Lab printed them from corn dough. The flower shape allowed for even frying, Fast Company reported. If you want pasta, Natural Machines says its Foodini printer can serve up gnocchi and ravioli.

The Dutch consultancy T

NO Research

envisions using 3-D printing to address world hunger, although some might squirm at their proposals. Their food printer can generate nutrient-rich snacks from alternative ingredients like algae and even mealworms.

If telling kids to eat broccoli because it’s “little trees” doesn’t work, perhaps Natural Machines’ 3-D printed

spinach quiche

will. To tempt picky young eaters, the Spanish startup produced vegetable snacks in the shape of butterflies and dinosaurs using their Foodini printer.