Space & Innovation

Particle Collider Spits Out Tiny Drops of Primordial Goo

A US-based laboratory has produced tiny droplets of a state of matter that existed in the first few milliseconds after the Big Bang after slamming particles together at close to the speed of light.

A US-based laboratory has produced tiny droplets of a state of matter that existed in the first few milliseconds after the Big Bang after slamming particles together at close to the speed of light.

ANALYSIS: LHC Creates Tiny Drops of Big Bang ‘Blood Spatter'

The matter, known as a quark-gluon plasma (or QGP), is predicted to exist when temperatures and densities are so extreme that regular matter cannot exist. Instead, a "perfect liquid" exists for a short time before it cools and condenses into the regular stuff that forms the building blocks of matter.

Although physicists have announced the detection of this exotic state of matter before, new results from the Relativistic Heavy Ion Collider (RHIC) at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, in Upton, New York, appear to show the tiniest droplets of quark-gluon plasma appear, in a specific pattern, after colliding helium-3 nuclei with gold ions.

"These tiny droplets of quark-gluon plasma were at first an intriguing surprise," said Berndt Mueller, Associate Laboratory Director for Nuclear and Particle Physics at Brookhaven, in a statement. "Physicists initially thought that only the nuclei of large atoms such as gold would have enough matter and energy to set free the quark and gluon building blocks that make up protons and neutrons. But the flow patterns detected by RHIC's PHENIX (Pioneering High Energy Nuclear Interaction eXperiment) collaboration in collisions of helium-3 nuclei with gold ions now confirm that these smaller particles are creating tiny samples of perfect liquid QGP."

ANALYSIS: In the Beginning, the Universe Was a Liquid

Experiments at RHIC and the Large Hadron Collider (LHC), near Geneva, Switzerland, have been chasing the formation of this primordial state of matter for some time. In 2013, LHC physicists also announced the discovery of these quark-gluon plasma droplets after slamming protons into lead ions.

But this is the first time that helium-3, a light ion, has been collided with heavy ions (gold), producing the signature of quark-gluon plasma. This indicates that the stuff can be produced at lower energies, opening a fascinating opportunity to study this quantum ‘goo' that last existed in nature in the first moments of the birth of our universe, some 13.8 billion years ago.

And the initial results seem to show these tiny droplets act as predicted - like a perfect, frictionless liquid.

"The idea that collisions of small particles with larger nuclei might create minute droplets of primordial quark-gluon plasma has guided a series of experiments to test this idea and alternative explanations, and stimulated a rich debate about the implications of these findings," added physicist Jamie Nagle, of the University of Colorado and co-spokesperson of the PHENIX collaboration at RHIC. "These experiments are revealing the key elements required for creating quark-gluon plasma and could also offer insight into the initial state characteristics of the colliding particles."

ANALYSIS: Could RHIC Strangelets Spawn Doomsday?

The discovery of a "perfect liquid" stemming from the collision of heavy ions in RHIC was first announced in 2005. Post-collision analysis seemed to show a collective "flow" of matter erupt from the intense flash of energy. This finding was inconsistent with the uniform expansion of a gaseous state of matter, so high-energy physicists realized that they were looking at a new state of matter, composed of quarks (the subatomic building blocks of protons and neutrons) and gluons (a particle, or "boson", that carries the strong nuclear force) that acts as a perfect liquid. Since these initial discoveries, physicists have refined their accelerator experiments, colliding different ions together, producing different configurations of the quark-gluon plasma.

In this helium-3 experiment, the helium-3 ion (containing 2 protons and 1 neutron) collided with a gold ion. The PHENIX detector picked up a triangular pattern emerge from the collision, each point of the triangle representing 3 tiny hotspots, each one believed to be the scrambled remains of the helium-3′s 2 protons and 1 neutron. And these hotspots behaved just as a quark-gluon should - like a perfect liquid.

ANALYSIS: Highest Man-Made Temperature: 4 TRILLION Degrees

These results back up findings from 2008 RHIC experiments into deuterium (containing 1 proton and 1 neutron) collisions with gold ions. In this case, 2 hotspots were formed during the collision, inspiring the helium-3 experiment to see if the shape of the quark-gluon plasma droplets is influenced by the colliding ions. This is a conclusion that appears to be valid.

"This is a pretty definitive measurement," Nagle said. "The paper has a plot of elliptical and triangular flow that pretty much matches the hydrodynamic flow calculations we'd expect for QGP. We are really engineering different shapes of the QGP to manipulate it and see how it behaves."

Once again, the power and precision of RHIC (and its sister ion-colliding accelerator, the LHC) has proven itself not only to understand this extreme state of matter, but it's also acting as a time machine, peeling back the nature of our universe to the first moments of its existence after the Big Bang.

Source: Brookhaven National Laboratory

The upper panel of this image represents initial hot spots created by collisions of one, two, and three-particle ions with heavy nuclei. The lower panel shows the geometrical patterns of particle flow that would be expected if the small-particle collisions are creating tiny hot spots of quark-gluon plasma.

Introduction

Did you own a toy race-car track as a child? Ever crash your model trains into one another just to see what happened? If you did, then congratulations, you already know some of the basic principles behind the Large Hadron Collider (LHC). Built by the European Organization for Nuclear Research (CERN), the 27-kilometer tunnel buried in the Swiss countryside exists to smash particle beams into each other at velocities approaching the speed of light. The idea is to use the resulting data to better understand the structure and origins of the universe. We're talking heavy questions and even heavier answers. Perhaps it's understandable that some critics, conspiracy theorists, crackpots and (alleged) time travelers might fear something more substantial than the Higgs boson particle. In this article, we'll run through some of the more popular misconceptions about the LHC and how little you have to fear about it causing the end of the world as we know it.

5. CERN Is Making an Antimatter Bomb

The Dan Brown detective novel (and movie adaptation) "Angels and Demons" centers on a plot to steal an antimatter bomb from CERN and blow up the Vatican with it. While the blockbuster delivered its share of action and intrigue, it fell short on facts. Two of the film's biggest mistakes revolved around antimatter's potential use as both an energy source and a weapon. Yes, when an antimatter particle comes in contact with normal matter, the two particles destroy each other and release energy. But CERN is quick to point out that the energy payoff simply isn't there. In fact, the transaction is so inefficient that scientists only get a tenth of a billionth of their invested energy back when an antimatter particle meets its matter counterpart. As for developing an antimatter bomb, the same principles apply. CERN points out that, at current production rates, it would take billions of years for the organization to produce enough antimatter to generate an explosion equal to an atomic blast.

4. Fun-sized Black Holes

Some concepts don't become tamer when you tack a "micro-" or a "mini-" prefix in front of them. For example, a mini-stroke is still an excellent reason to visit the hospital, and you'd certainly be ill advised to question the power of a minigun. So when CERN scientists mention that they might create microscopic black holes in the midst of their particle smashing, it's easy to understand some of the ensuing panic. Based on Einstein's theory of relativity, a few speculative theories lend a sheen of possibility to micro-black hole creation. The good news is that these theories also predict the micro-black holes would disintegrate immediately. If these black hole welterweights did hang around a little longer, it would take billions of years to consume the mass of a tiny grain of sand. That means no reducing the European countryside to a singularity and certainly no destroying the planet "Star Trek" style.

3. Attack of the Strangelets

Read enough space publications and your perception of the universe changes pretty fast. Once you get beyond the absurd vastness of the cosmos, you encounter such mind-rending notions as black holes, antimatter and dark matter. After you've swallowed the notion of a gigantic star collapsing into something smaller than a pinhead, it's easy to get bowled over by the idea of universe-destroying strangelets. Strange matter is presumed to be 10 million times denser than lead and was birthed during the Big Bang from the hearts of dense stars. The fear, which originated with the start-up of the Relativistic Heavy Ion Collider (RHIC) in 2000, is that the LHC will inadvertently produce strangelets -- tiny particles of strange matter -- and that these particles will swiftly convert surrounding normal matter into even more strange matter. It only takes a thousand-millionth of a second for the chain reaction to convert the entire planet. Strangelets, however, are purely speculative, and haven't surfaced in over eight years of RHIC operation. CERN says that the RHIC was far more likely to produce the theoretical matter than the LHC, so there's really no chance of it consuming the planet.

2. Time Travelers Hate It

In "Bill & Ted's Excellent Adventure," the titular slacker duo wields time travel with the logic of a 12-year-old. When Bill and Ted need a cell key to bust a few historical figures out of a modern California jail, they simply make a mental note for their future selves to travel back in time and plant the key where they can find it. While the 1989 buddy comedy is pretty much the antithesis of hard science fiction, its view of time-travel logic is shockingly similar to a 2009 theory regarding the LHC. Danish string theory pioneer Holger Bech Nielsen and Japanese physicist Masao Ninomiya, in a series of posted physics articles, laid out their theory that the Higgs boson particle is so abhorrent to nature that its future creation will send a ripple back through time to keep it from being made. Naturally, this theory summons images of T-800s, Jean-Claude Van Damme and Hermione Granger all galloping back through time to prevent future disasters, but not everyone is busy cracking jokes and reminiscing about time-travel movies. The two scientists aren't even talking about shadowy strangers from the future, but merely "something" looping back through the fourth dimension. Imagine a poorly designed bomb that, upon creation, destroys half the bomb factory. Now expand that example out from the confines of linear time.

1. Gateway to Hell

Black holes, antimatter explosions and even strangelets all originate from scientific fact and theory (albeit with a bit of imagination thrown in). Forget all that for the moment and consider the "Satan's Stargate" theory, proposed by Chris Constantine, better known on the Internet as YouTube user gorilla199. Constantine charges that the LHC exists "to disrupt a hole in the Van Allen belt that surrounds the Earth" and "to allow the return of the Annunaki from the planet Nibiru in order that they can come here, corrupt the rest of the Earth and do battle with God at Armageddon." There's also some stuff in there about freemasonry, cosmic rays and the Old Testament offspring of humans and fallen angels. According to BBC News, Constantine received a suspended sentence for DVD pirating after his defense attorney charged that Constantine suffered from a serious psychiatric condition. The Antichrist could not be reached for comment.