Space & Innovation

Octo-Skin Could Create Vanishing Displays

The synthetic fabric is inspired by an octopus’ stretchy, color-shifting skin.

If you wanted to create a synthetic fabric to cover a humanoid robot, referring to an octopus' stretchy, color-shifting skin might do the trick.

Now, researchers have done just that: creating a soft, three-layered, light-emitting material infused with electronic sensors.

10 Animal-Like Robots That Slither, Hop, Run And Fly

"Our target was to make sensors in the skin so we can feel its external shape and the robot can feel its own shape," said Rob Shepherd, assistant professor of aeronautical and mechanical engineering at Cornell University and an author on the new study coming out today in the journal Science.

"The bonus is that these sensors can also emit light."

Robo-Kitty Is Small, Light And Fast

Shepherd and graduate student Shuo Li, lead author on the paper, said the new material will more likely be used to display information in an airplane cockpit or on a car's dashboard – rather than building an army of androids.

The researchers say they want to make something called "vanishing interfaces," such as a radio volume control knob that appears and lights up when you need it, then disappears back into the dashboard when finished.

Artificial Squid Skin Created

"Think about a cockpit in a jet fighter," Shepherd said. "There are tons of things to see and interact with but maybe not at the same time."

"Being able to have an interface emerge when you need it and then disappear may simplify controls in complex environment."

A sensitive, color-changing robot -- human-shaped or not -- could also be used in a hospital setting to monitor how patients are feeling, for example, as well as measuring and displaying their vital signs at the same time.

Colors are associated with moods, he explained, and having robots display colors will help them communicate with people.

The team, funded by the U.S. Army and U.S. Air Force, put the new skin on an existing "soft robot" built by Shepherd and Li.

10 Animal-Like Robots That Slither, Hop, Run And Fly

The skin consists of two layers of a transparent hydrogel -- (salty water) sandwiching a electroluminescent rubber-like material.

"All three layers form a capacitor," Li said. "By introducing a voltage we can make it emit light. The whole structure is based on soft materials so it is very stretchable."

In fact, the skin can stretch five times its normal size, making it perfect for the disappearing act that Shepherd envisions.

Robo-Kitty Is Small, Light And Fast

Three six-layer electronic panels were bound together to form a crawling soft robot, with the top four layers making up the light-up skin and the bottom two the pneumatic actuators.

The chambers were alternately inflated and deflated, with the resulting curvature creating an undulating, "walking" motion.

The synthetic "octo-skin" is 5 millimeters thick, with each of the 64 pixels measuring 4 millimeters square.

Artificial Squid Skin Created

Michael Tolley, professor of bio-inspired engineering at the University of California, San Diego, said that the study is a step forward in highly stretchable displays and sensors used for soft robots.

"Technological advances like this one will enable engineers to design robotic systems that are increasingly soft and adaptable like biological systems," he said in an e-mail to Discovery News.

"I can imagine this type of display and sensor being used for systems built for human-robot interaction in the context of service robotics, entertainment, or many other applications."

The soft, three-layered, light-emitting material is infused with electronic sensors.

Animals got it going on. They fly better than humans, swim better, run faster, and hop higher. So it's no surprise that scientists are building robots modeled after creatures from the animal kingdom. Here are 10 of our favorites. Meet Spot, a four-legged robotic dog that can run over terrain, climb stairs and can handle a kick to the ribs without a flinch. Google-owned Boston Dynamics’ robot uses an electrical/hydraulic system and is designed for both indoor and outdoor operation.

BionicKangaroo is a robot developed by automation company Festo to technologically reproduce the unique way that a kangaroo moves. Just like a kangaroo, the robot recovers energy when jumping, stores it and efficiently uses it for the next jump.

A turtle-shaped robot named Beachbot, created by Disney Research labs, uses a retractable rake and onboard sensors to etch elaborate lines and designs in the sand.

The Great Elephant robot, which makes the French city of Nantes its home, is made from 45 tons of reclaimed wood and steel. The mechanical elephant can carry up to 49 passengers at a time on a 45-minute walk.

The Atrias robot is modeled after birds, which are arguably the fastest and most agile two-legged runners in the world. The robot, developed by researchers at the Oregon State University’s Dynamic Robotics Laboratory, has impeccable balance and can withstand kicks, punches and even a barrage of dodge balls.

The ACM-R5H robot, developed by Japan-based HiBot, is intended for inspection and search operations in underwater environments. In the front unit, a wireless camera is mounted to capture images.

German robotics company Festo is known for its animal-inspired robots. One of their latest creations is BionicAnt, a colony of small robots that work together to accomplish tasks, similar to how real insect societies work together toward a common goal.

The Navy recently deployed a robotic shark called the GhostSwimmer unmanned underwater vehicle (UUV), which is five feet long and 100 pounds. It is based on biomimetic design principles and can be used for intelligence, surveillance and reconnaissance missions, as well as hull inspections of friendly ships.

Boston Dynamics’ Cheetah robot is capable of running faster than any human, with speeds reaching 28.3 mph. It also has an articulated back that flexes back and forth on each step, mimicking the movement of a cheetah.

The T8, by Robugtix, is made with high-resolution 3D-printed parts, and is modeled after the movements of a spider. It has 26 different motors, with three in each leg and two in the abdomen.