Probe Tracks Object in Solar System's Badlands

While coasting through the outer solar system, NASA's New Horizons is busying itself with astronomical observations of a distant Kuiper Belt Object.

With its primary mission far behind, NASA's New Horizons is getting used to its new role as humanity's deep space emissary.

The probe buzzed Pluto and its system of moons on July 14, 2015, providing us with an unprecedented and stunning view of the dwarf planet. But with Pluto now millions of miles in New Horizons' rear view mirror, it's looking forward to another encounter, with a Kuiper Belt Object (KBO) called 2014 MU69, in 2019.

ANALYSIS: New Horizons is Seeing Signs of Kuiper Belt ‘Blood Spatter'

Along the way, however, the spacecraft isn't being idle, it's doing science and, as the only mission that has ever explored the Kuiper Belt, has made a second observation of a distant KBO called 1994 JR1, refining its position to a high precision.

Using its Long Range Reconnaissance Imager (LORRI), New Horizons in April imaged 1994 JR1 from a distance of around 69 million miles. This is the second time the mission has checked in on the 90 mile wide object; the first was in November 2015 when New Horizons was 170 million miles away. These are the closest ever astronomical images of a KBO.

"Combining the November 2015 and April 2016 observations allows us to pinpoint the location of JR1 to within 1,000 kilometers (about 600 miles), far better than any small KBO," said New Horizons science team member Simon Porter, of Southwest Research Institute (SwRI) in Boulder, Colo.

ANALYSIS: Pluto Probe Spies Object Lurking in the Kuiper Belt

These observations are valuable as it helps scientists understand where the object came from. There has been some speculation that 1994 JR1 was once a quasi-satellite of Pluto. These new observations immediately dispel this idea.

Interestingly, using this series of observations, astronomers have been able to deduce the rate of the object's spin - and it's spinning fast. By monitoring the slight brightening and dimming of 1994 JR1, which corresponds to brightness changes on the object's surface as it rotates, it is spinning at a rate of once every 5.4 hours, which is "relatively fast" for a KBO, said New Horizons' John Spencer, also from SwRI.

"This is all part of the excitement of exploring new places and seeing things never seen before," he added.

It is hoped that, during its extended mission deep into the Kuiper belt, New Horizons might be able to make similar measurements of another 20 KBOs.

NEWS: Pluto's Weirdly Young Surface Doesn't Make Sense

Having a robotic mission in the frozen badlands of the solar system is a historic opportunity. The Kuiper belt is the ancient shattered remains of our solar system's youth. By studying Pluto, its moons and the mysterious objects deep inside the Kuiper belt, we're turning back the pages of our star system's history books, giving us a privileged look into how the planets came to form and under what conditions our young sun grew up in.


The Kuiper Belt Object has been tracked by New Horizons' LORRI instrument as it moves in front a field of stars.

June 18, 2015 --

A few decades ago, getting a spacecraft to another world was a feat in itself. We take it for granted today, and demand more -- images and videos and science data that will tell us more about how that world came to be. And luckily for us, usually spacecraft succeed in delivering that. This week,

new images came from Pluto's vicinity

, showing us more surface detail on the dwarf planet. Click through to read more about Pluto and some other objects that got enhanced with spacecraft views, such as Mars, volcanic Io, and dwarf planet Ceres (complete with baffling bright spots).

Image: Pluto is getting big in the camera view of the New Horizons spacecraft, which will fly by the dwarf planet in July.

The first close-up view of Pluto is coming oh so soon; on July 14, the New Horizons spacecraft will whiz by the dwarf planet and its moons. What exactly is on its surface is a mystery. But looking at Pluto will give us a sense of what other icy objects far away in the solar system look like as well. Long-range observations of Pluto over the years (done by the Hubble Space Telescope) show a mottled surface that changes as the dwarf planet rotates.

MORE: Hubble Joins Hunt for New Target for Pluto-Bound Probe

Image: Even from afar, the Hubble Space Telescope was able to spot a mottled surface on Pluto in images released in 2010.

But it's New Horizons that is presenting more detailed questions. Is that a bright polar cap at the pole? Why are there dark and bright patches at the equator? We'll know more in just over a month.

MORE: NASA Probe Reveals More Detail in Pluto's Complex Surface

Image: Pluto's surface features are coming into sharper view for the New Horizons mission, which will fly by the dwarf planet in a few weeks.

What the heck are those white things? On Ceres, a dwarf planet in our asteroid belt, the Hubble Space Telescope spotted the bright regions in images released in 2005. "The bright spot that appears in each image is a mystery. It is brighter than its surroundings. Yet it is still very dark, reflecting only a small portion of the sunlight that shines on it,"

officials wrote at the time


MORE: Water Plume 'Unequivocally' Detected at Dwarf Planet Ceres

Image: A bright region on dwarf planet Ceres jumped out in these images released from the Hubble Space Telescope in 2005.

With the Dawn spacecraft now a few weeks into its mission at Ceres, there have been many

high-resolution images

of these spots -- yet astronomers remain puzzled. Are they ice? Are they salt? It will take more investigation to figure out what they are made of and how they arrived. As far as we know, NASA says, the phenomenon is unique in the solar system.

MORE: We STILL Don't Know What Those Bright Blobs on Ceres Are

Image: The Dawn spacecraft arrived at Ceres in 2015 and took closer-up images of several bright spots on the surface, but their nature is still unknown.

The first flybys of Mars happened to go by heavily cratered areas, leaving the impression that the planet looked a lot like the moon. The visions of life dancing in the public's heads faded, and the planet appeared a dead world until Mariner 9 did a global mission in 1971. From orbit, the NASA spacecraft spotted ancient volcanoes such as Olympus Mons and also discovered Valles Marineris, a vast canyon network stretching across most of the planet.

MORE: Epic Supervolcanoes May Have Decimated Mars

Image: Olympus Mons, a dormant volcano on Mars, emerges from a dust storm viewed by NASA's Mariner 9 in 1971.

Today we are lucky to have high-resolution images of Mars beaming back every day, so we can look in more detail at changes to the planet over time. The 2004 Mars Express image of the caldera (volcanic craters) on Olympus Mons is the first high-resolution image of them, according to the European Space Agency. The public also get involved through another Mars orbiter, NASA's Mars Reconnaissance Orbiter -- you can request photos of certain regions

via the HiRISE camera website


MORE: The Psychedelic Landscape of Mars

Image: The caldera (volcanic craters) on top of Olympus Mons, viewed by the European Space Agency's Mars Express in 2004.

From its perch in Earth orbit, the Hubble Space Telescope was instrumental in telling the

Rosetta spacecraft

how to get to Comet 67P/Churyumov-Gerasimenko. In 2003, the telescope pinned down the size and rotation period of the comet, and far-away measurements made it appear as though the comet was football-shaped.

MORE: Comet-Hunting Probe to Awaken, Zero In On Target

Image: Vague 3D images of Comet 67P/Churyumov–Gerasimenko from Hubble Space Telescope data in 2003.

Scientists and the public alike were enchanted in 2014 when Rosetta finally got close to the comet. An intriguing "rubber-duckie" shape emerged as pictures made it clear the comet is loosely held together at a joint. In November, the Philae spacecraft landed on the surface and got data for a few dozen hours there before hibernating; it just started re-communicating a few days ago.

MORE: Philae Rises! What's Next for Rosetta's Comet Lander?

Image: The odd rubber-duckie shape of Comet 67P/Churyumov–Gerasimenko became clear in pictures from the Rosetta spacecraft, which began orbiting the comet in 2014.

When the Voyager spacecraft flew by Titan in the early 1980s, there was only so much the pair could see. That's because they could only take images in visible light; an orange haze obscured the surface, leaving Titan's features mostly a mystery for decades. Much like peering through Venus' shroud, it would require images in light human eyes can't see to ferret out more of Titan's mysteries.

MORE: Titan's Hazy Sunsets Shed Light on Alien Atmospheres

Image: A visible-light image of Titan's haze taken by one of the Voyager spacecraft as it went through Saturn's system.

The Cassini spacecraft arrived at Saturn's system in 2004 and is well-equipped to see through the haze. For example, this 2014 image by Cassini's Visible and Infrared Mapping Spectrometer (VIMS) shows

seas of ethane and methane

. The spacecraft has found bodies of liquid near the poles and sand dunes closer to the equator. Also, the Huygens spacecraft landed on the surface and briefly sent back images in 2005.

MORE: Cassini Spies a Sunny Day on Titan's Seas

Image: In near-infrared light, seas pop out on Titan in this image from the Cassini spacecraft.

Mercury, the planet closest to the sun, escaped close scrutiny for much of the space age. A single probe flew a few times past the planet in 1974-5 and provided tantalizing glimpses of its surface. But a complete global map, and an idea of its insides and atmosphere, would have to wait several more decades.

PHOTOS: Mariner 10: Our First Mission to Mercury

Image: In 1974-5, Mariner 10 did just three flybys of Mercury and showed a heavily cratered surface.


just concluded the MESSENGER

(Mercury Surface, Space Environment, Geochemistry and Ranging) mission at Mercury in April. Some of MESSENGER's major finds include strong evidence of water ice at the poles, a tenuous atmosphere that changes with the seasons, and evidence of old volcanic deposits.

MORE: MESSENGER's Last Mercury Photo Before Crashing is Crazy Close-Up

Image: MESSENGER provided the first complete maps of Mercury, and provided evidence of ice in permanently shadowed craters near the pole. This image and data was released in 2012.

In contrast to our quiet moon, Io is an extremely volcanic moon at Jupiter. When Voyager 1 flew by the moon in 1979, its mottled, pizza-like appearance caused a stir -- not to mention the fact that Voyager spotted an eruption during its brief time in Jupiter's system.

MORE: Volcanoes on Jupiter's Moon Io Are All Wrong

Image: Voyager 1 captured this picture of a volcanic explosion on Io in 1979.

NASA's Galileo spacecraft followed up in the 1990s by taking global images of Io's surface and peering closely at the aftermath of explosions. Understanding how volcanoes work on Io can help us understand their processes more generally in the solar system.

MORE: Icy Europa Does Battle With Solar System's Most Hellish Moon

Image: Galileo was able to capture even more detail of Io's eruptions, such as this series of lava deposits shown in images released in 1999.