Seeker Archives

Laser Weapon Stops Truck — from a Mile Away

The laser system is designed to protect military forces and key infrastructure.

A laser weapon made by Lockheed Martin can stop a small truck dead in its tracks from more than a mile (1.6 kilometers) away, the company announced this week.

The laser system, called ATHENA (short for Advanced Test High Energy Asset), is designed to protect military forces and key infrastructure, Lockheed Martin representatives said. During a recent field test, the laser managed to burn through and disable a small truck's engine.

The truck was not driving normally; it was on a platform with the engine and drivetrain running, Lockheed Martin representatives said. The milestone is the highest power ever documented by a laser weapon of its type, according to the company. Lockheed is expected to conduct additional tests of ATHENA. [7 Technologies That Transformed Warfare]

Photos: Something Wrong? Zap It With Lasers

"Fiber-optic lasers are revolutionizing directed energy systems," Keoki Jackson, Lockheed Martin's chief technology officer, said in a statement. "This test represents the next step to providing lightweight and rugged laser-weapon systems for military aircraft, helicopters, ships and trucks."

The ATHENA system could be a boon for the military because the laser can stop ground-based adversaries from interfering with operations long before they reach the front lines, company representatives said.

The laser weapon is based on a similar system called Area Defense Anti-Munitions (also developed by Lockheed Martin), which focuses on airborne threats. The 30-kilowatt Accelerated Laser Demonstration Initiative - the laser in ATHENA itself - was also made by Lockheed.

Zapped! U.S. Navy Deploys Laser Weapons

The recent test was the first time that such a laser was tested in the field, the company said. The Accelerated Laser Demonstration Initiative is a multifiber laser created through a technique called spectral beam combining. Essentially, the system takes multiple lasers and mashes them into one. Lockheed representatives said this beam "provides greater efficiency and lethality than multiple individual 10-kilowatt lasers used in other systems."

Last year, Lockheed also highlighted laser defense capabilities in a demonstration test between two boats that were located about 1 mile apart. The vessels, described as "military-grade," were stopped less than 30 seconds after the laser burned through the boat's rubber hull.

Original article on Live Science.

Flying Saucers to Mind Control: 7 Declassified Military & CIA Secrets How Do Laser Weapons Work? (Infographic)

Science Fact or Fiction? The Plausibility of 10 Sci-Fi Concepts Copyright 2015 LiveScience, a Purch company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Lockheed Martin's ATHENA laser weapon system stopped a truck by disabling the vehicle's engine.

Lasers may bring to mind military-grade weaponry or the pew-pew sounds of science fiction blasters, but powerful laser tech can be used for less destructive purposes. Scientists and engineers are now aiming lasers at persistent problems like air turbulence, inoperable tumors and drug addiction. Here's a look at the ways zapping something with a beam of light can actually help rather than hurt.

Scientists -- and super villains -- have long wanted to control the weather with technology. What once seemed like a wild dream has become possible in theory. In late 2013, the World Meteorological Organization conference in Geneva held a Laser, Weather and Climate conference where participants discussed controlling lightning and condensation with laser assists.

More recently researchers at the University of Florida and the University of Arizona surrounded one laser beam with another, a technique they think could help a high-energy beam go greater distances.

In 2010, neurosurgeons from Washington University were among the first in the United States to use a laser probe on brain tumors thought to be inoperable. The team, led by chief of neurosurgery Ralph G. Dacey Jr., employed the new MRI-guided probe from Monteris Medical to kill cancer cells deep in a patient’s brain, leaving the surrounding tissue intact. Last year the laser probe, called the NeuroBlate Thermal Therapy System, was cleared by the Food and Drug Administration.

Laser beams could be the key to getting hearts beating correctly, an alternative to current electrode-based pacemakers that can do damage to heart muscle over the long-term. In 2010, scientists from Case Western University and Vanderbilt University successfully paced a live quail embryo heart with light from an infrared laser.

While we don’t quite have human optical pacemakers yet, a team from the University College London recently made headway with a separate laser-based technique. They’re hoping to create an “optical pacemaker” for the diaphragm that could help patients with motor neuron diseases like ALS breathe independently.

Apira Science Inc.’s iGrow helmet to combat baldness may not look serious at first, but the company says this low-level laser therapy has been proven effective at stimulating cell activity around weak hair follicles. The helmet interior has red laser and LED light diodes that go to work in multiple weekly sessions over several months.

Apria points to an article in the journal Lasers in Surgery and Medicine that concluded low level laser therapy improved hair counts for men with alopecia compared to a placebo light-up helmet.

Could controlling addiction be as easy as flipping a switch? In 2013, scientists from the National Institutes of Health and the University of California were able to turn off compulsive behavior in rats through a combination of genetic engineering and laser light delivered through fiber optic cables. When they turned on a laser light in the brain region responsible for decision-making and impulse control, the compulsive cocaine seeking was gone, according to researcher Antonello Bonci.

While lasers were used for the study, techniques like noninvasive transcranial magnetic stimulation would probably be used for human trials.

A team from Leibniz University Hanover led by biosystems engineering professor Thomas Rath has been working on a way to eradicate pesky weeds with lasers. In 2012 he and his colleagues investigated mid-infrared range lasers as an alternative to herbicides.

A year later Leibniz University engineers shifted their focus and began studying the effects of near-infrared lasers on pests like aphids and whiteflies. They hope the right lase blast will safely kill the pests while leaving the host plants unaffected.

Last summer frequent fliers got a glimmer of hope for smoother travel. Researchers at the German Aerospace Center DLR’s Institute of Atmospheric Physics began testing technology that can detect turbulence, particularly the clear air kind that’s nearly impossible to predict. The device goes onboard a plane and emits short-wave ultraviolet laser radiation along the direction of flight, according to DLR. This reveals fluctuations in air density that indicate turbulence ahead. DRL has been testing the tech on flights in Europe with the goal of extending the detection distance to 20 miles.

Stanford University bioengineering, psychiatry and behavioral science professor Karl Deisseroth is a pioneer in using a technique called optogenetics, which involves genetically modifying neurons so they make a light-sensitive protein. Those cells can then be turned on or off with laser-based light.

Recently a group from University College London led by neurobiologist Linda Greensmith used optogenetics on paralyzed mice. Her group grafted genetically engineered motor neurons onto severed nerves in mice legs. Shining blue light on them restored nerve connectivity, reversing the paralysis.