Space & Innovation

Could This Alien Cell Thrive on Titan?

Chemical engineers have created a theoretical model of a type of alien cell that might be able to support life on Titan.

In a world first, chemical engineers have taken a different look at a question astronomers and biologists have been pondering for decades: Does Saturn moon Titan host life?

Of course, Titan is way too hostile for life as we know it to eke out an existence - it is a frigid world awash with liquid methane and ethane and a noxious atmosphere devoid of any liquid water. But what if there is a different kind of biology, a life as we don't know it, thriving on the organic chemistry that is abundant on Titan's surface?

VIDEO: Can a Moon be Older Than its Planet?

Normally, astrobiologists combine what we know about Earth's biosphere and astronomers zoom in on other stars containing exoplanets in the hope that some of those alien world have some similarities to Earth. By looking for small rocky exoplanets orbiting inside their star's habitable zones, we are basically looking for a "second Earth" where liquid water is at least possible. Where there's liquid water on Earth, there's inevitably life, so scientists seeking out alien life "follow the water" in the hope of finding life with a similar terrestrial template on other planets.

Titan, however, does not fall into this category. It's about as un-Earth-like as you can get. So, chemical molecular dynamics expert Paulette Clancy, astronomer Jonathan Lunine and James Stevenson, a graduate student in chemical engineering, all from Cornell University, Ithaca, N.Y., have looked at Titan in a different light and created a theoretical model of a methane-based, oxygen-free life form that could thrive in that environment.

PHOTOS: 10 Years Later: When Huygens Landed on Titan

There is no known template for this kind of life on Earth, but the researchers have studied what chemicals are in abundance on Titan and worked out how a very different kind of life could be sparked.

As a collaborator on the NASA/ESA Cassini-Huygens mission, Lunine, Professor in the Physical Sciences in the College of Arts and Sciences' Department of Astronomy, has been fascinated with the possibility of methane-based life existing on Titan for some time, so he joined forces with Clancy and Stevenson to see what this hypothetical life form might look like.

In their research published in the journal Science Advances on Feb. 27, the researchers focused on building a cell membrane "composed of small organic nitrogen compounds and capable of functioning in liquid methane temperatures of 292 degrees below zero (Fahrenheit; or 94 Kelvin)," said a Cornell press release. On Earth, water-based molecules form phospholipid bilayer membranes that give cells structure, housing organic materials inside while remaining permeable. On Titan, liquid water isn't available to build these cell membranes.

"We're not biologists, and we're not astronomers, but we had the right tools," said Clancy, lead researcher of the study. "Perhaps it helped, because we didn't come in with any preconceptions about what should be in a membrane and what shouldn't. We just worked with the compounds that we knew were there and asked, ‘If this was your palette, what can you make out of that?'"

NEWS: An Awesome New Way to Look at Titan

The researchers were able to model the ideal cell that can do all the things that life can do (i.e. support metabolism and reproduction), but constructed it from nitrogen, carbon and hydrogen-based molecules that are known to exist in Titan's liquid methane seas. This chemical configuration gives this theoretical alien cell stability and flexibility in a similar manner to Earth life cells.

"The engineers named their theorized cell membrane an ‘azotosome,' ‘azote' being the French word for nitrogen. ‘Liposome' comes from the Greek ‘lipos' and ‘soma' to mean ‘lipid body;' by analogy, ‘azotosome' means ‘nitrogen body.'" - Cornell

"Ours is the first concrete blueprint of life not as we know it," said lead author Stevenson, who also said that he was inspired, in part, by Isaac Asimov, who wrote the 1962 essay "Not as We Know It" about non-water-based life.

ANALYSIS: Titan's ‘Magic Island' Appeared Mysteriously From the Depths

Having identified a possible type of cell membrane chemistry that functions in the Titan environment as a cell on Earth might, the next step is to model how such a hypothetical type of biology would function on Titan. In the long run, we might also be able to model what kinds of observable indicators we should look for that might reveal that alien biology's presence.

That way, should a mission be eventually sent to Titan's seas, sampling the chemical compounds in the soup of organics may reveal a biology of a very alien nature.

Source: Cornell University

A representation of the modeled 9-nanometer azotosome -- the approximate size of a virus -- with a piece of the membrane cut away to show the hollow interior.

Ten years ago,

the European Huygens probe descended through Titan's atmosphere

and became the first ever robotic mission to touch down on a world in the outer solar system. During its daring 2 hour, 27 minute descent through the murky atmosphere of Saturn's largest moon, the probe revealed an unprecedented view of of the alien environment. On landing, Huygens survived on the hydrocarbon-rich surface for only 72 minutes before its batteries drained, but the data it transmitted via NASA's Cassini spacecraft was nothing short of revolutionary -- data that continues to be analyzed 10 years after that fateful day on Jan. 14, 2005.

Top 10 Space Stories of the Decade

Here are just a few mind-blowing images from Huygens as it gave us our first intimate look at the solar system's only moon known to possess a thick atmosphere and vast liquid methane-ethane lakes -- a world that, like Jupiter's moon Europa, invokes exciting hypotheses of extraterrestrial biology.

After traveling with the Cassini mission for seven years during its interplanetary transit from Earth to Saturn orbit, the command was given for Huygens to detach from its mothership. For 21 days, the small disk-like probe was by itself, cruising toward Titan. As Huygens ripped through Titan's atmosphere, eventually slowing down enough for its heatshield to drop away and parachutes deploy, the probe got to work, rapidly photographing its descent and collecting atmospheric data. On Wednesday, The European Space Agency released the full series of

stunning processed descent images

, showing how the moon's dune-covered surface slowly came to view as Huygens slowly drifted to the surface below.

NEWS: Cassini Spies a Sunny Day on Titan's Seas

Looking down, Huygens also captured a slowly evolving view of its eventual landing spot. Shown here, a fish-eye view of the landscape below starts to detail some of the surface features the probe would be soon analyzing up-close. In the run-up to landing day, mission scientists were unsure whether Huygens would land on a solid surface or splash down in a methane/ethane puddle or lake. As it turned out, the probe "splatted down" in Titan's alien mud -- a mix of small grains of ice.

ANALYSIS: Titan's 'Magic Island' Appeared Mysteriously From the Depths

Photographs during descent gradually showed an alien, yet familiar, landscape. Titan is covered in dunes, valleys and lakes -- all shaped by erosion processes we'd find on Earth. The valleys are cut by liquid action and the thick atmosphere produces winds and weather systems that form dune fields of fine hydrocarbon sand. But these Titan weather systems are not driven by an Earth-like water cycle. As the atmosphere is too cold to support water in a liquid state, other chemicals, such as methane and ethane exist as a liquid, forming their own cycle. Methane rain is now known to fall onto the landscape, creating rivers that erode valleys and form deltas in vast liquid methane-ethane lakes.

NEWS: Sands of Time Move Slowly on Saturn Moon Titan

By landing a probe onto Titan's surface, the joint NASA/ESA Cassini-Huygens mission was able to get "ground proof" of flyby imaging and radar. Last year, Cassini completed its 100th Titan flyby, so in the 10 years since Huygens landed, planetary scientists have been getting a front row seat of the moon. But in 2005, Titan science was as foggy as the moon's atmosphere, so by overlaying ground-based observations with Cassini images, a better interpretation of landscape features spotted by Cassini could be made.

Top 10 Places To Find Alien Life

Although low-resolution and grainy, the first images of the landscape surrounding Huygens after it landed at 13:34 CET (12:34 GMT) on Jan. 14, 2005, stunned the world. Rounded stones appeared to litter the grains of hydrocarbon sand and ice. The eroded rocks immediately reminded us of eroded pebbles -- rocks that have undergone liquid action for long periods of time. The landing zone resembled a dried-up lake bed and surrounding that area, evidence for rapid, transient flows of liquid could be seen.

NEWS: Cassini Spies Wind-Rippled Sea on Titan

The Huygens lander, in its short solo mission, punched well above its weight, opening our eyes to an alien world within our solar system that is littered with prebiotic chemicals, a world that resembles a young Earth, beckoning our inquiring minds to return some day.

For more on the Huygens landing and the top 10 scientific discoveries made by the probe's continuing science, browse the special ESA anniversary news release.