Awareness After Death? Study Hints It Exists

Some believe consciousness does not originate in the brain, but is filtered by the brain.

Scientists have long rolled their eyes at near-death experiences, chalking them up to the effects of anesthesia, or low oxygen, or religious and spiritual hallucinations.

But it's hard to square that, some argue, with a new 4.5-year study involving 2,060 patients that found what researchers claim may be awareness after the body and brain has shut down. One particularly striking case describes a 57-year-old man whose heart stopped beating for three minutes. After resuscitation, he was able to recount sights and sounds that corresponded to the period when his heart was not beating.

"While it was not possible to absolutely prove the reality or meaning of patients' experiences and claims of awareness, (due to the very low incidence), it was impossible to disclaim them either and more work is needed in this area," lead researcher and assistant professor of medicine at the State University of New York at Stony Brook Sam Parnia told Discovery News.

Of the 140 patients who were interviewed for the AWARE study ("AWAreness during REsuscitation"), 9 percent reported near-death experiences according to a scale developed by psychiatrist Bruce Greyson. But Parnia believes the actual percentage may be higher because some experiences are not immediately recalled.

"More people may have conscious awareness than we had anticipated and then lose their memory of it," he said.

Using methods similar to earlier research but on a broader scale, Parnia's team prepped hundreds of rooms with special shelves high on walls in 15 hospitals in the U.K., United States, and Austria where cardiac arrest patients were likely to get placed.

"Each shelf contained one image only visible from above the shelf (these were different and included a combination of nationalistic and religious symbols, people, animals, and major newspaper headlines)," the authors wrote, because so many accounts of near-death experiences "include the perception of being able to observe their own CA (cardiac arrest) resuscitation from a vantage point above."

The team also trained nurses and physicians to interview the subjects who gave consent.

Two of the 140 patients interviewed described visual and auditory happenings consistent with their medical reports, although neither happened to be placed in a room with the shelves.

One of the two grew too ill to continue the follow-up interviews, but the other described events at length:

"I can remember vividly an automated voice saying, 'shock the patient, shock the patient,' and with that, up in (the) corner of the room there was a (woman) beckoning me. . ..and the next second, I was up there, looking down at me, the nurse, and another man who had a bald head. . .I couldn't see his face but I could see the back of his body. He was quite a chunky fella. . .He had blue scrubs on, and he had a blue hat, but I could tell he didn't have any hair, because of where the hat was," the patient recalled.

Those details correspond with about three minutes while the patient's heart was not beating, the authors said.

Penny Sartori, an intensive care nurse who studied near-death experiences and wrote "Near Death Experiences of Hospitalized Intensive Care Patients, a Five Year Clinical Study," is not surprised by this account. Out of the 39 survivors she outlined in her study, seven reported memories during flatlining, she said.

"This is really quite significant, because it's really showing us that our understanding of consciousness is changing the more we learn about it," she said.

More and more people are understanding that consciousness is not localized in the brain, she added.

"I think our understanding of consciousness is flawed," Sartori said. "Science has believed it's a byproduct of the brain, but I don't think it is. I think the brain acts as a filter and sometimes screens out consciousness. There are times in our life when the filter becomes dysfunctional and we experience a hyper state of consciousness."

Still, although previous research like Sartori's has pointed toward similar conclusions, Parnia has found it hard to find acceptance for such ideas in the scientific community.

Whether or not there's consensus, the study may spark research and debate about long-held beliefs about consciousness.

"I don't think anyone knows the relationship between consciousness and the brain," Parnia said. "It's one of the biggest mysteries in science. But there's lots of research beginning to explore it, and this is one avenue to do it."

Do out-of-body experiences occur after death?

Optical illusions may seem like nothing more than visual trickery. But they are actually a result of our brains trying to predict the future.

When light hits our retina, it takes about one-tenth of a second for our brain to translate that signal into perception. Evolutionary neurobiologist Mark Changizi says this neural delay makes our brains generate images of what it thinks the world will look like in one-tenth of a second. It's not always right.

“Your brain is slow, so you need to basically create perceptions that correct for that delay,” said Changizi, director of human cognition at 2AI Labs.

Creating an image of the very near future probably kept early humans alive because it kept them from bumping into dangerous objects or being attacked by a fast-moving predator.

Click through the following images and see how our ability to predict the future one-tenth of second in advance also messes with your mind.

BLURRED LINES

When images of objects flow across the retina, it activates all these different neurons in our brains. This is the mechanism by which the brain figures out how to extrapolate the next moment.

“When you move through the world, your eyes take snapshots,” said Chingazi. “During that snapshot, as something moves across your visual field, you don’t just end up with a dot on your retina, you end up with a blurred line on your retina.”

Our perception doesn’t see them, but the blurred lines make our brains realize that something is in motion. From there we can determine the direction of an object moving in our world. Since the blurred lines are all emanating from a single point in your visual field, they can inform you on the direction you’re going.

“Once you know the direction you’re going, you can determine how all these things would change in the next moment,” said Chingazi.

Take the above photo of “warp speed.” You don’t even have to question in what direction those blurred lines are taking you. Little did you know, "Blurred Lines" is more than just the most over-hyped song of the summer.

HERING ILLUSION

Perhaps the best representation of blurred lines and how they apply to optical illusions is the Hering illusion. Its radial spokes are blurred lines, all emanating from a single point. Those lines tell us where we are heading: forwards, towards the center.

The reason the two vertical lines appear to bow in the middle is because the radial lines suck our field of vision towards the center, as if we were in motion. In fact, those vertical lines are parallel, despite what our brain tells us. Our perception is actually showing us what those parallel lines look like in the next tenth of a second, the moment our gaze “passes through” the vertical lines, towards the vanishing point of the radial lines.

To simplify things, Chingazi suggests we imagine walking through a very tall doorway of a cathedral. When we’re really far away, the doorway sides seem parallel to one another. The angular distance between the top, middle and bottom of the door are all roughly the same.

“Once you’re really close or going through the cathedral doorway, the parts at eye-level are going to be wider apart,” he said. “When you look up, they actually converge like railroad tracks in the sky.”

Essentially, this is the same phenomenon that happens in the Hering illusion.

GRAND UNIFIED THEORY

Shapes aren’t the only objects that change as we move forward. Other factors like angular size -- how much of our visual field is taken up by an object – speed, distance and the color contrast between an object and its background also contribute to optical illusions.

Changizi determined that many illusions can be defined within his future-seeing process, so he created a chart with 28 categories that help organize what he calls his “grand unified theory.”

“This seven-by-four table really has one hypothesis that explains them all,” he said. “It makes a prediction across these 28 categories about what kind of illusions you should expect and how the illusions will reveal themselves across these 28 kinds of stimuli.”

The above illusion was created by a former student of Chingizi’s, and it demonstrates elements of speed, size and contrast. Move your head towards the center and the bright-white center appears to quickly fill the circle. Move your head backward and the dark perimeter appears to close in on the white center.

EBBINGHAUS

The orange circle on the left appears much smaller than the one on the right, when in fact they are the same size. This is the classic Ebbinghaus illusion, named after Hermann Ebbinghaus, the German psychologist who discovered it. British psychologist Edward Titchener popularized the illusion in the early 20th Century, as the illusion is also known as “Titchener circles.”

The juxtaposition of the circles’ sizes and distance from each other make them appear incongruent.

PINK DOTS

It’s time to play magician and make the pink splotches disappear. Stare at the cross in the center of the image and before you know it, you have a completely gray rectangle.

If we fixate on one single point, we tend to keep our eyes still. Those blurry pink orbs are now on the periphery of our visual field and tend to disappear because we’re zeroing in on the cross. Despite being physically present, the pink smudges do not stimulate our neurons enough to maintain visual perception. The phenomenon is known as “Troxler’s fading,” discovered by Swiss physician Ignaz Paul Vital Troxler in 1804.

Although the pink dots are static, they’re actually a part of an animated illusion called the “Lilac Chaser,” created by Jeremy Hinton around 2005. In that illusion, a green dot seemingly “eats” the other dots in a clock-wise fashion, thus it’s sometimes known as the “Pac-Man” illusion.

CAFE WALL ILLUSION

This illusion is attributed to British psychologist Richard Gregory. Legend has it that his lab assistant saw this illusion in the wall tiles at a cafe in Bristol. The black and white pattern was offset by a half a tile, causing the illusion to appear.

Though they appear to be at an angular pitch, the horizontal lines are parallel. Distance and contrast are two operating variables in this illusion.

Interested in seeing the tiles at the original Bristol location? The cafe is still there, but it’s reportedly closed. However, curious trekkers can find it at the bottom of St. Michael's Hill.

ROTATING SNAKES

So-called peripheral drift illusions, such as Japanese psychology professor Akiyoshi Kitaoka's “Rotating Snakes,” are motion illusions that occur in our visual periphery. These illusions work best when you look off to the side of the image.

Earlier studies of the “Rotating Snakes” suggested that perceived motion was triggered by eyes moving slowly across the images. But a 2012 study, led by neuroscientist Susana Martinez-Conde, showed that fast eye movement, some of which is microscopic, drive the perceived motion.

SCINTILLATING GRID

The scintillating grid is an illusion created by superimposing white dots at the intersection of gray lines on a black background. Dark dots seem to appear and disappear at the intersections, and jump around the grid, thus the term “scintillating.”

Trying to pin down one of the black dots with your gaze is like playing a hands-free version of Wack-a-Mole, as the dark spots only appear in your periphery.

CONTRASTING RECTANGLES

One of the clearest examples of how sharp, black-and-white contrast effects the gray scale can be seen in the image above.

The gray bars between the black stripes appear darker than the gray bars between the white strips. However, the gray bars are the same shade. Chingizi’s “grand unified theory” states the higher the contrasts nearby an object, the lower in contrast that object will appear.

3-D CHALK DRAWINGS

Lady, look out for that giant snail, it’s about to attack! Oh wait, shwoo, it’s only one of Julian Beever’s pavement drawings.

The English artist and renowned darling of gotta-see Internet pics has been taking to streets and sidewalks all across the world since the mid 1990’s. He employs a projection technique called anamorphosis to give the illusion that his drawings are three dimensional when viewed from a certain angle.

3-D CHALK DRAWINGS, AGAIN

Shoppers in Camberley, England, got a glimpse of Santa in his snowy underground grotto courtesy of Julian Beever's amazing 3-D street art.

SPECKLED CORKSCREW

While this image looks like a model of the future’s coolest water slide, it’s artist Anh Pham’s version of a peripheral drift illusion.

Concentrate on one of the pink spots and you may be able to stop that ring from moving, but it’s a different story in your visual periphery. Good luck tearing yourself away from this one.

PERSPECTIVE CHAIR

Go to any tourist destination in the world that has an iconic structure, such as the Eiffle Tour, the Taj Mahal or the Washington Monument, and you’ll find tons of fanny-packed shutter bugs creating their own optical illusions. Because objects in the distance appear smaller, altering your perception angle can make it seem like the Eiffle Tour is small enough to fit in the palm of your hand. Or that you can push against the Leaning Tower of Pisa to keep it from falling over.

As the above couple demonstrates with the incredible-shrinking-man illusion, altering your perspective can drastically change your perception.