Space & Innovation

Kepler's 'Alien Megastructure' Star Just Got Weirder

"Tabby's Star" has dramatically dimmed and we don't know why.

You're probably all too familiar with the story of KIC 8462852, a star that's been the focus of much speculation and excitement over the past few months.

KIC 8462852 was observed by NASA's Kepler mission and has become infamous for its bizarre and unprecedented transit signal that was flagged by citizen scientists. Now new research of precision Kepler observations has shown that the overall brightness of the star -- unofficially named "Tabby's Star" after astronomer Tabetha S. Boyajian who discovered the peculiar signal -- has been decreasing, which poses a new and confusing problem for astronomers trying to understand what the heck is going on.

RELATED: Kepler's 'Bizarre' Signal Sparks Alien Intelligence Speculation

Kepler's prime mission is to look for small worlds that pass in front of their parent stars causing a slight dimming of starlight. The "transit method" has been hugely successful and has confirmed well over 2,000 planets orbiting other stars in our galaxy.

But Tabby's Star's transit signal, otherwise known as a "light-curve", stopped astronomers in their tracks. Something passed in front of it, dimming its starlight a whopping 20 percent and other jumbled transit signals revealed that something wasn't quite right with this particular star. Then, in an interview with The Atlantic, Penn State University astronomer Jason Wright speculated that the signal could be indicative of an "alien megastructure" that's in the process of being built. You can catch up on the controversy surrounding the anomalous signal in my recent Discovery News article "Closing In on 'Alien Megastructure' Clues."

WATCH VIDEO: We're Not Saying the Kepler Discovery Is Aliens... But...

So, until now the leading (natural) explanation of the strange light-curve has focused on the possibility of a huge swarm of comets passing in front of the star, blocking a substantial portion of starlight from Kepler's optics. Recently, this hypothesis was given a little more credence after observations by the Submillimeter Array and the James Clerk Maxwell Telescope in Hawaii revealed little evidence it might be caused by the debris cloud of some planetary smashup. But the "swarm of comets" explanation still fell short of fully explaining the phenomenon, though for now it remains the leading rationale.

RELATED: Alien Megastructure? SETI Spies No Intelligent Signals

All this uncertainty has only boosted speculation surrounding the (unnatural) explanation: that an advanced alien civilization is building some kind of Dyson Sphere-like structure around a star to (perhaps) collect solar energy for all of its energy consumption needs. In this scenario, pieces of the alien array are passing in front of the star, causing the anomalous transit signal. Of course, scientists being a rational bunch think there's a more likely explanation for the light-curve, but aliens will always hog headlines.

So, in an effort to track down a rational explanation, Bradley Schaefer from Louisiana State University decided to study historical observations of KIC 8462852 in astronomical photographic plates from the past century to see if the star exhibited any bizarre fluctuations in brightness in the past. Sure enough, yes, the star is a bit of an oddball and has shown a long-term decreasing trend in brightness! Since the 19th Century, its brightness has decreased steadily by nearly 20 percent.

Now, astronomers Ben Montet (from Caltech) and Joshua Simon (from the Carnegie Institute) have released a paper to the arXiv preprint service detailing recent Kepler observations of KIC 8462852 since the space telescope was launched in 2009. Although the dataset for this time period is comparatively small, Monet and Simon found yet another surprise.

RELATED: Has Kepler Discovered an Alien Megastructure?

In the 4 years of Kepler's primary mission, the star showed an unprecedented dimming of 3.5 percent. So not only did Kepler detect transient dips in brightness of up to 20 percent, there also seems to be a very definite downward trend in brightness throughout our observational history of the star.

No matter how you slice it, this is strange.

After studying photometric observations for other stars surrounding KIC 8462852, there's no other star that shows such dramatic behavior. What's more, there's very few known phenomena that could be causing this. So once again, astronomers are clutching at straws in an effort to explain what is going on.

"Broadly speaking, the morphology of the light curve is generally consistent with the transit of a cloud of optically thick material orbiting the star," Monet and Simon write in their paper. "The breakup of a small body or a recent collision that could produce a cloud of material could also plausibly produce a family of comets that transit the host star together as one group, explaining the light curve..."

RELATED: Alien Megastructure? Probably Not. Exocomets More Likely

However, like all rational explanations for the behavior of KIC 8462852, there's an infuriating "but."

According to the researchers, for the cloud theory to hold true, it would need to be orbiting the star at "impossibly large distances" from the star or would need to have a strange structure that increases in density as it transits across the face of the star. This poses a challenge and they say that the idea is far from complete.

So now we're back, once again, in the rather uncomfortable territory of speculating about the root cause behind yet another Tabby's Star mystery.

Though the majority of studies are focused around trying to understand what caused the dramatic transit signals -- Swarm of comets? Planetary smashup? -- these explanations don't really help when trying to understand why there's a dramatic long-term dimming. Could this new mystery be explained away by some bizarre cloud of dust? Or is it down to some unknown stellar physics gone wild?

Regardless, none of these studies have been able to shake Wright's early speculation that some alien civilization could be constructing a massive star-encompassing structure. And now, with these dimming observations, could it be that we're seeing a megastructure as it's being built?

For now, we simply do not know... but it's a lot of fun to speculate.

via Gizmodo

GALLERY: How Aliens Could Find Us:

Nov. 8, 2011 --

Despite the occasional report of an extraterrestrial sighting, be it through a microscope revealing curious shapes in a meteorite or a photo of wispy lights taken at the blurry end of a camera lens, aliens have yet to make contact with humans. Even the White House yesterday put out a statement declaring that the federal government "has no evidence that any life exists outside our planet, or that an extraterrestrial presence has contacted or engaged any member of the human race." Humans may not yet have encountered life outside of our planet, but many scientists see it as an inevitability. In 1960, astronomer Frank Drake came up with the now eponymous equation which provided an estimate of the number of civilizations in our galaxy. Although scientists continue to debate the application of his formula as well as alternatives, Drake's own solution to the equation is 10,000 civilizations, suggesting intelligent, technologically advanced life outside our planet is common. How these different civilizations, including our own, find each other is an important question for anyone here on Earth looking for extraterrestrials. Explore how aliens might stumble upon our planet -- and how we might actually spot them first.

BLOG: ARE UFOS ALIEN? NO!

Before we can began to search the skies, we have to start by narrowing down our options. Sticking within our own galaxy is a good start, since we're more likely to spot a neighbor closer to us than one further away. Astronomers may also elect to focus their attention on stars closer to the center of the Milky Way, where 90 percent of its stars are clustered. Furthermore, the stars here are a billion times older than the sun, giving life more time to develop biologically and technologically. Many stars are unsuitable for nurturing life, and even stars that do have the appropriate "spectral type" may host exoplanets inhospitable to life due to their location relative to their parent star, size or composition. These criteria would not only help us find aliens, but also help them find us. After all, Earth would stand out as a hospitable planet, according to a paper published in 2007 in Astrophysical Journal.

If aliens are looking for us, they're scanning the same, vast, dark and mostly empty expanse of space that we are. It's a good thing then that we're leaving the lights on to make it easier to find us. According to Abraham Loeb, of Harvard University and Edwin Turner, from Princeton University, by scanning the skies for artificial illumination as opposed to naturally occurring light sources, both human and extraterrestrial astronomers might be able to find signs of life. Existing telescopes would be able to see a city the size of Tokyo as far as the edges of our solar system.

BLOG: CITY LIGHTS COULD REVEAL ET

For more than 25 years, the SETI Institute has been scouring the skies for signs of alien life. However, long before the institute was established, scientists have tried to catch a communication signal from another world. Scientists looking for alien signals use a combination of optical and radio telescopes, such as the one seen here. Dropping in on a signal without knowing the source of the communication is the tricky part, however, and researchers narrow down their search by targeting specific kinds of stars. With their citizen science program, SETI@home, the institute has enlisted three million additional observers analyzing data for traces of an alien signal.

BLOG: MAN LOOKS FOR ALIENS, LOSES JOB

Have aliens already stopped by for a visit, even though we weren't at the door to meet them? If they have, shouldn't they have left something behind? An artificial object of alien origin could be lurking in our solar system without our knowledge. As Discovery News' Ray Villard explains: "In a paper published in the 1960s, Carl Sagan, using the Drake Equation, statistically estimated that Earth might be visited every few tens of thousands of years by an extraterrestrial civilization." Further out beyond our solar system, aliens may have left what essentially amount to interstellar billboards large enough to be seen by, say, a planet-hunting telescope like Kepler. These last two scenarios, of course, envision an extremely technologically advanced civilization well beyond the engineering capabilities of humankind. At the same time, humans have sent spacecraft beyond the solar system, including Pioneer 10 and 11 as well as Voyager 1 and 2. All of these spacecraft are equipped with what are essentially calling cards for the human race -- small plaques in the case of the Pioneer spacecraft and golden records for the Voyager spacecraft (seen here).

SCIENCE CHANNEL: Top 10 Alien Sightings

Humans may rely primarily on fossil fuels as their primary means of energy, but that doesn't mean extraterrestrials in a far off civilization have the same power source. Solar power could be one option, though not quite with the same black panels we use on Earth. A super civilization could even tap into a black hole to meet its energy needs. If aliens are tapping to these cosmic bodies, that should make them all the more detectable from Earth. How would we know whether an alien race was relying on a black hole as a source of energy? As Discovery News' Ray Villard explains: "Tell-tale evidence would come from measurements that showed the black hole weighed less than 3.5 solar masses. That's the minimum mass for crushing matter into a black hole via a supernova core-collapse."

In one of the most unusual -- and highly unlikely -- first-contact scenarios, aliens would be able to recognize us by the level of greenhouse gas emissions we pump into our atmosphere. Not only that, according to a hypothesis put forward by researchers affiliated with NASA and Pennsylvania State University (though not directly tied with either institution), but aliens may use that as cause to wipe out the human race. In this bizarre set of circumstance, aliens view human advancement as a destructive force spiraling out of control. To avoid the threat of a future adversary, extraterrestrials clear out the competition.

BLOG: TO SAVE THE GALAXY, DESTROY HUMANITY