We now live in a universe that we know is humming with gravitational waves.

Before the historic announcement on Thursday morning at a National Science Foundation (NSF) meeting in Washington D.C., there were only rumors that the Laser Interferometer Gravitational-Wave Observatory (LIGO) had discovered this key component of Albert Einstein's General Relativity, but now we know that the reality is even more profound.

VIDEO: Gravitational Waves Confirmed: A Historic Discovery

With stunning clarity, LIGO was able to “listen in" on the moments before a black hole binary system (two black holes orbiting one another) merged as one, producing a gravitational wave signal that was so clear, so in keeping with our theoretical models, there was little room for speculation. LIGO had witnessed a powerful black hole “re-birthing" that occurred around 1.3 billion years ago.

Gravitational waves have always been there and always will be, washing through our planet (indeed, washing through us), but only now do we know how to find them. We've now opened our eyes to a different kind of cosmic signal — the vibrations caused by the most energetic events known — and we are therefore witnessing the birth of a brand new field of astronomy.

“We can now hear the universe," said LIGO physicist and spokesperson Gabriela Gonzalez during Thursday's triumphant meeting. “The detection is the beginning of a new era: The field of gravitational astronomy is now a reality."

ANALYSIS: We Just Heard the Spacetime 'Chirp' of Black Hole Rebirth

Our place in the universe has changed profoundly and this discovery's impact could be as transformative as the discovery of radio waves or the realization that the universe is expanding.

Making Robust Theories Even Stronger

Trying to explain what gravitational waves are and why they're so important is almost as complex as the equations that describe them, but finding them not only strengthens Einstein's already robust theories as to the nature of spacetime; we now have a tool that can probe into a layer of the universe that was once invisible to us. We can now sample the spacetime ripples generated by some of the most energetic events that occur in the universe and, perhaps, use gravitational waves to reveal new physics and discover new astrophysical phenomena.

“Now we have proven that we have the technology to go after and detect gravitational waves, this opens up many possibilities," Luis Lehner, of the Perimeter Institute for Theoretical Physics, Ontario, told me during an interview soon after Thursday's announcement.

Lehner's research focuses on compact objects (such as black holes) that generate powerful gravitational waves. Though not affiliated with the LIGO collaboration, Lehner was quick to realize the ramifications of this historic discovery. “This signal couldn't be better," he said.

ANALYSIS: Where Did Those Gravitational Waves Come From? There's a Map

This is an aerial photograph of the LIGO Livingston Observatory in Louisiana. LIGO SCIENCE COLLABORATION

The discovery is profound in 3 ways, he argues. First, we now know that gravitational waves exist and we know how to detect them. Second, the signal detected by the LIGO stations on Sept. 14, 2015, is the strongest evidence yet of the existence of a binary black hole system — each black hole “weighing in" at a few tens of solar masses. The signal is exactly what we'd expect to see during the violent merger of two black holes, one 29 times the mass of our sun and the other 36 solar masses. Thirdly, and possibly even more important, “short of sending someone to a black hole," this is the strongest direct evidence of the existence of black holes.

Spacetime Serendipity

This event was also very lucky, as many scientific discoveries tend to be. LIGO is the biggest project funded by the National Science Foundation and it was originally put online in 2002. It turned out that, after many years of seeking out the elusive signal of gravitational waves, LIGO simply wasn't sensitive enough and in 2010 the observatory went offline while its international collaboration worked on a huge sensitivity upgrade. Five years later, in September 2015, “Advanced LIGO" was born.

At the time LIGO co-founder and theoretical physics heavyweight Kip Thorne was positive that Advanced LIGO would be a success, telling the BBC: “We are there; we are in the ball park now. It's clear that this is going to be pulled off." And sure enough, within days of the upgrade, a surge of gravitational waves rippled through our planet and LIGO was at last sensitive enough to observe them.

GUIDE: What You Need to Know About Gravitational Waves

This binary black hole merger isn't thought to be particularly special in its own right; it is calculated that these kinds of events happen once every 15 minutes somewhere in the universe. But this merger happened in the right place (1.3 billion light-years away) at the right time (1.3 billion years ago) for LIGO to be listening. It was a clear signal from the universe that Einstein got it right and his gravitational waves were real, revealing a cosmic event that unleashed a peak power 50 times the power output of all the stars in the universe combined. This huge blast of gravitational wave energy was recorded as a high-frequency “chirp" by LIGO as the black holes rapidly spiraled into one another, merging as one.

To confirm the propagation of gravitational waves, LIGO is comprised of 2 observing stations, one in Louisiana and the other in Washington. To rule out false positives, a candidate gravitational wave signal needs to be detected by both stations. And the Sept. 14 event was detected first in Louisiana and then 7 milliseconds later in Washington. The signals matched and, through triangulation, physicists were able to learn that it originated in Southern Hemisphere skies.

Gravitational Waves — What Are They Good For?

So we have a confirmed black hole merger signal, what now? This discovery is historic, that much is clear — one hundred years ago, Einstein wouldn't have dreamed that these waves would be detectable, but here they are.

ANALYSIS: Colliding Black Holes and the Dawn of Gravitational Astronomy

General relativity was is one of the most profound scientific and philosophical realizations of the 20th Century and it forms the basis of some of our most intellectual investigations into reality itself. Astronomically, the applications of general relativity are clear; from gravitational lensing to measuring the expansion of the universe. But what's not so clear are the everyday applications of Einstein's theories, but much of today's technology uses lessons from general relativity and things we take for granted. Take, for example, global positioning satellites: they wouldn't be the precise tools that they are if simple corrections for time dilation (a general relativity prediction) weren't considered.

It's clear that general relativity has real-world applications, but when Einstein presented his new theory in 1916, it's highly doubtful that any application would have seemed obvious. He was simply piecing together the universe as he saw it and general relativity was born. So now another component of general relativity has been proven, how might gravitational waves be used? Well, astrophysicists and cosmologists are obviously thrilled.

“Once we've collected data from pairs of black holes, they will be like lighthouses scattered through the universe," said theoretical physicist Neil Turok, Perimeter Institute Director, in a video presentation on Thursday. “We will be able to measure the rate the universe is expanding, or how much dark energy there is in the universe to extraordinary precision, far, far greater than what we can do today

“Einstein developed his theory with some clues from Nature but made basically on the grounds of logical consistency. One hundred years later you're seeing its predictions confirmed at exquisite precision."

ANALYSIS: Gravitational Waves vs. Gravity Waves: Know the Difference!

What's more, the Sept. 14 event has some peculiarities physicists are looking forward to investigating. For example, Lehner pointed out that from analysis of the gravitational wave signal, the “spin" or angular momentum of the merged black hole can be measured. “If you've worked on the theory for long enough, you'll know that spin the black hole has is very, very peculiar," he said.

For some reason, the final spin of the black hole is slower than expected, indicating that the two black holes collided at a low speed, or they were in a collision configuration that caused their combined angular momentum to counteract each other. “That is very curious; why would nature do that?" said Lehner.

This early puzzle could be down to some basic physics that hasn't been considered, but more excitingly it could reveal some “new" or exotic physics that is interfering with the predictions of general relativity. And this highlights another use for gravitational waves: as they are generated by strong gravity phenomena, we have a means to probe these environments from afar, perhaps turning up some surprises along the way. Also, we might combine observations of astrophysical phenomena with the electromagnetic signals to add more dimensions to our understanding of what makes our universe tick.

An Application?

Naturally, when huge announcements are made of complex scientific discoveries, many people outside of the scientific community ask how it affects them. The profundity can be easily missed and this is definitely the case when it comes to gravitational waves. But consider this: When X-rays were revealed by Wilhelm Roentgen in 1895 during his experiments on cathode ray tubes, few would have known that in only a few years these high-energy electromagnetic waves would become a key component in everyday medicine from diagnosis to treatment. Likewise, the first experimental production of radio waves in 1887 by Heinrich Hertz confirmed predictions by James Clerk Maxwell's famous electromagnetic equations. Only years later, in the 1890′s, a series of demonstrations by Guglielmo Marconi, who set up radio transmitters and receivers, proved they had a practical use. Also, Schrodinger's equations describing the unfathomable world of quantum dynamics are finding an application right now in the development of super-fast quantum computing.

ANALYSIS: Advanced LIGO Resumes Quest for Gravitational Waves

A LIGO engineer assesses the interferometer for contaminants.LIGO

All scientific discoveries are profound and many eventually have everyday applications that we take for granted. For now, the practical applications of gravitational waves may seem restricted to astrophysics and cosmology — we now have a window into a “dark universe" where no electromagnetic radiation is required. There is little doubt in my mind that scientists and engineers will find other uses for these spacetime ripples besides the awesome application of probing spacetime. That said, to detect these waves in the first place huge advances in optical engineering had to be performed by LIGO that will inevitably spawn new technologies.

100 Years of General Relativity: Thought and Action

Ultimately, the detection of gravitational waves is a triumph for humanity that will continue to teach us new things about our universe for generations to come. This is most definitely a golden age for science, where historic discoveries are commonplace. These discoveries drive our culture forward, making us all richer and more aware that our universe is a beautiful and complex place. And we know we have the intellectual capability to create models of how we think the universe works and then perform experiments to prove we are right.

But for me, I'm most excited to see the first “live" gravitational maps of the cosmos, where the periodic humming of neutron stars orbiting one another and the impulsive eruptions of supernovas are plotted, revealing a new universe, a universe humming with ripples in spacetime.